
DM841

Constraint Programming

Constraint Propagation Algorithms

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Resume

▶ Definitions
(CSP, restrictions, projections, istantiation, local consistency)

▶ Tigthtenings

▶ Global consistent (any instantiation local consistent can be extended to a solution) needs
exponential time
⇝ local consistency defined by condition Φ of the problem

▶ Tightenings by constraint propagation: reduction rules + rules iterations
▶ reduction rules ⇔ Φ consistency
▶ rules iteration: reach fixed point, that is, closure of all tightenings that are Φ consistent

2



Outline

1. Local Consistency

2. Arc Consistency Algorithms

3



Node Consistency
We call a CSP node consistent if for every variable x every unary constraint on x coincides with the
domain of x .

Example

▶ ⟨C, x1 ≥ 0, . . . , xn ≥ 0; x1 ∈ N, . . . , xn ∈ N⟩
and C does not contain other unary constraints
node consistent

▶ ⟨C, x1 ≥ 0, . . . , xn ≥ 0; x1 ∈ N, . . . , xn ∈ Z⟩
and C does not contain other unary constraints
not node consistent

A CSP is node consistent iff it is closed under the applications of the Node Consistency rule
(propagator):

⟨C ; x ∈ D⟩
⟨C ; x ∈ C ∩ D⟩

(the rule is parameterised by a variable x and a unary constraint C )
4



Arc Consistency
Arc consistency: every value in a domain is consistent with every binary constraint.

▶ C = c(x , y) with D = {D(x),D(y)} is arc consistent iff
▶ ∀a ∈ D(x) there exists b ∈ D(y) such that (a, b) ∈ C
▶ ∀b ∈ D(y) there exists a ∈ D(x) such that (a, b) ∈ C

▶ P is arc consistent iff it is AC for all its binary constraints

In general arc consistency does not imply global consistency.
An arc consistent but inconsistent CSP:

̸=

=x ∈ {a, b} y ∈ {a, b}

A consistent but not arc consistent CSP:

=

x ∈ {a, b} y ∈ {a}

5



Arc Consistency

A CSP is arc consistent iff it is closed under the applications of the Arc Consistency rules
(propagators):

⟨C ; x ∈ D(x), y ∈ D(y)⟩
⟨C ; x ∈ D ′(x), y ∈ D(y)⟩

where D ′(x) := {a ∈ D(x) | ∃b ∈ D(y), (a, b) ∈ C}

⟨C ; x ∈ D(x), y ∈ D(y)⟩
⟨C ; x ∈ D(x), y ∈ D ′(y)⟩

where D ′(y) := {b ∈ D(y) | ∃a ∈ D(x), (a, b) ∈ C}

6



Generalized Arc Consistency (GAC)

Given arbitrary (non-normalized, non-binary) P, C ∈ C, xi ∈ X (C )

(Value) v ∈ D(xi ) is consistent with C in D iff ∃ a valid tuple τ for C : vi = τ [xi ]. τ is called
support for (xi , vi )

(Variable) D is GAC on C for xi iff all values in D(xi ) are consistent with C in D (i.e.,
D(xi ) ⊆ π{xi}(C ∩ π{X (C)}(D)))

(Problem) P is GAC iff D is GAC for all x in X on all C ∈ C

P is arc inconsistent iff the only domain tighter than D which is GAC for all
variables on all constraints is the empty set.

(aka, hyperarc consistency, domain consistency)

8



Example

⟨x = 1, y ∈ {0, 1}, z ∈ {0, 1}; C = {x ∧ y = z}⟩
is hyperarc consistent

⟨x ∈ {0, 1}, y ∈ {0, 1}, z = 1; C = {x ∧ y = z}⟩
is not hyper-arc consistent

Example: arc consistency ̸= 2-consistency, AC < 2C on non-normalized binary CSP, and
incomparable on arbitrary CSP (later)

9



Generalized Arc Consistency

A CSP is arc consistent iff it is closed under the applications of the Arc Consistency rules
(propagators):

⟨C ; x1 ∈ D(x), . . . , xk ∈ D(xk)⟩
⟨C ; x1 ∈ D(x1), . . . , xi−1 ∈ D(xi−1), xi ∈ D ′(xi ), xi+1 ∈ D(xi+1), . . . , xk ∈ D(xk)⟩

where D ′(xi ) := {a ∈ D(xi ) | ∃τ ∈ C , a = τ [xi ]}

10



Outline

1. Local Consistency

2. Arc Consistency Algorithms

11



Arc Consistency
Arc Consistency rule 1 (propagator):

⟨C ; x ∈ D(x), y ∈ D(y)⟩
⟨C ; x ∈ D ′(x), y ∈ D(y)⟩

where D ′(x) := {a ∈ D(x) | ∃b ∈ D(y), (a, b) ∈ C}

This can also be written as (⋊⋉ represents the join):

D(x)← D(x) ∩ π{x}(⋊⋉(C ,D(y)))

Arc Consistency rule 2 (propagator):
⟨C ; x ∈ D(x), y ∈ D(y)⟩
⟨C ; x ∈ D(x), y ∈ D ′(y)⟩

where D ′(y) := {b ∈ D(y) | ∃a ∈ D(x), (a, b) ∈ C}

This can also be written as:

D(y)← D(y) ∩ π{y}(⋊⋉(C ,D(x)))

12



Generalized Arc Consistency

(Generalized) Arc Consistency rule (propagator):

⟨C ; x1 ∈ D(x), . . . , xk ∈ D(xk)⟩
⟨C ; x1 ∈ D(x1), . . . , xi−1 ∈ D(xi−1), xi ∈ D ′(xi ), xi+1 ∈ D(xi+1), . . . , xk ∈ D(xk)⟩

where D ′(xi ) := {a ∈ D(xi ) | ∃τ ∈ C , a = τ [xi ]}

This can also be written as:

D(xi )← D(xi ) ∩ π{xi}(C ∩ πX (C)(D))

13



AC1 – Reduction rule
Revision: making a constraint arc consistent by propagating the domain from a variable to anohter
Corresponds to:

D(x)← D(x) ∩ π{x}(⋊⋉(C ,D(y)))

for a given variable x and constraint C
Assume normalized network:

Complexity:O(d2) or O(rd r )
d values, r arity

14



AC1 – Rules Iteration
Binary case

▶ Complexity (Mackworth and Freuder, 1986): O(end3)
e number of arcs, n variables
(ed2 each loop, a single succesful removal causes all loop again ⇝ nd number of loops)

▶ best-case = O(ed)

▶ Arc-consistency is at least O(ed2) in the worst case (see later)
▶ ⇝ too many calls to Revise

15



AC3 (Macworth, 1977)
General case – Arc oriented (coarse-grained)

O(er3d r+1) time
O(er) space

16



AC3
Example

P = ⟨X = (x , y , z), D = {D(x) = D(y) = {1, 2, 3, 4},D(z) = {3}},
C = {C1 ≡ x ≤ y ,C2 ≡ y ̸= z}}⟩

17



AC4
Binary normalized problems – value oriented (fine grained)

counter[xi , vi , xj ]: how many supports vi has on cij
S[xj , vj ]: all values that are supported

by (xj , vj ) on cij

O(ed2) time (optimal)
O(ed2) space

O(erd r ) time for GAC

18



AC4
Example

P = ⟨X = (x , y , z), DE = {D(x) = D(y) = {1, 2, 3, 4},D(z) = {3}},
C = {C1 ≡ x ≤ y ,C2 ≡ y ̸= z}}⟩

19



AC6
Binary normalized problems

S[xj , vj ]: list of values (xi , vi ) currently having (xj , vj ) as
their first support

O(ed2) time
O(ed) space

20



AC6
Example

P = ⟨X = (x , y , z), DE = {D(x) = D(y) = {1, 2, 3, 4},D(z) = {3}},
C = {C1 ≡ x ≤ y ,C2 ≡ y ̸= z}}⟩

21



Reverse2001
Binary case — optimal coarse-grained Last(xi , vi , xj ): pointer to store vj , the smallest support in cij

O(ed2) time
O(ed) space

22



Reverse2001
Example

P = ⟨X = (x , y , z), DE = {D(x) = D(y) = {1, 2, 3, 4},D(z) = {3}},
C = {C1 ≡ x ≤ y ,C2 ≡ y ̸= z}}⟩

23



Limitation of Arc Consistency

Example

⟨x < y , y < z , z < x ; x , y , z ∈ {1..100000}⟩

is inconsistent.

Proof: Apply revise to (x , x < y)

⟨x < y , y < z , z < x ; x ∈ {1..99999}, y , z ∈ {1..100000}⟩,

ecc. we end in a fail.

▶ Disadvantage: large number of steps.
Run time depends on the size of the domains!

▶ Note: we could prove fail by transitivity of <.
⇝ Path consitency involves two constraints together

24



References

Bessiere C. (2006). Constraint propagation. In Handbook of Constraint Programming, edited by F. Rossi,
P. van Beek, and T. Walsh, chap. 3. Elsevier. Also as Technical Report LIRMM 06020, March 2006.

25


	Local Consistency
	Arc Consistency Algorithms

