
DM841

Constraint Programming

Constraint Propagation Algorithms

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Resume

▶ Definitions
(CSP, restrictions, projections, istantiation, local consistency)

▶ Tigthtenings

▶ Global consistent (any instantiation local consistent can be extended to a solution) needs
exponential time
⇝ local consistency defined by condition Φ of the problem

▶ Tightenings by constraint propagation: reduction rules + rules iterations
▶ reduction rules ⇔ Φ consistency
▶ rules iteration: reach fixed point, that is, closure of all tightenings that are Φ consistent
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Outline

1. Local Consistency

2. Arc Consistency Algorithms
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Node Consistency
We call a CSP node consistent if for every variable x every unary constraint on x coincides with the
domain of x .

Example

▶ ⟨C, x1 ≥ 0, . . . , xn ≥ 0; x1 ∈ N, . . . , xn ∈ N⟩
and C does not contain other unary constraints
node consistent

▶ ⟨C, x1 ≥ 0, . . . , xn ≥ 0; x1 ∈ N, . . . , xn ∈ Z⟩
and C does not contain other unary constraints
not node consistent

A CSP is node consistent iff it is closed under the applications of the Node Consistency rule
(propagator):

⟨C ; x ∈ D⟩
⟨C ; x ∈ C ∩ D⟩

(the rule is parameterised by a variable x and a unary constraint C )
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Arc Consistency
Arc consistency: every value in a domain is consistent with every binary constraint.

▶ C = c(x , y) with D = {D(x),D(y)} is arc consistent iff
▶ ∀a ∈ D(x) there exists b ∈ D(y) such that (a, b) ∈ C
▶ ∀b ∈ D(y) there exists a ∈ D(x) such that (a, b) ∈ C

▶ P is arc consistent iff it is AC for all its binary constraints

In general arc consistency does not imply global consistency.
An arc consistent but inconsistent CSP:

̸=

=x ∈ {a, b} y ∈ {a, b}

A consistent but not arc consistent CSP:

=

x ∈ {a, b} y ∈ {a}
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Arc Consistency

A CSP is arc consistent iff it is closed under the applications of the Arc Consistency rules
(propagators):

⟨C ; x ∈ D(x), y ∈ D(y)⟩
⟨C ; x ∈ D ′(x), y ∈ D(y)⟩

where D ′(x) := {a ∈ D(x) | ∃b ∈ D(y), (a, b) ∈ C}

⟨C ; x ∈ D(x), y ∈ D(y)⟩
⟨C ; x ∈ D(x), y ∈ D ′(y)⟩

where D ′(y) := {b ∈ D(y) | ∃a ∈ D(x), (a, b) ∈ C}
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Generalized Arc Consistency (GAC)

Given arbitrary (non-normalized, non-binary) P, C ∈ C, xi ∈ X (C )

(Value) v ∈ D(xi ) is consistent with C in D iff ∃ a valid tuple τ for C : vi = τ [xi ]. τ is called
support for (xi , vi )

(Variable) D is GAC on C for xi iff all values in D(xi ) are consistent with C in D (i.e.,
D(xi ) ⊆ π{xi}(C ∩ π{X (C)}(D)))

(Problem) P is GAC iff D is GAC for all x in X on all C ∈ C

P is arc inconsistent iff the only domain tighter than D which is GAC for all
variables on all constraints is the empty set.

(aka, hyperarc consistency, domain consistency)
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Example

⟨x = 1, y ∈ {0, 1}, z ∈ {0, 1}; C = {x ∧ y = z}⟩
is hyperarc consistent

⟨x ∈ {0, 1}, y ∈ {0, 1}, z = 1; C = {x ∧ y = z}⟩
is not hyper-arc consistent

Example: arc consistency ̸= 2-consistency, AC < 2C on non-normalized binary CSP, and
incomparable on arbitrary CSP (later)
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Generalized Arc Consistency

A CSP is arc consistent iff it is closed under the applications of the Arc Consistency rules
(propagators):

⟨C ; x1 ∈ D(x), . . . , xk ∈ D(xk)⟩
⟨C ; x1 ∈ D(x1), . . . , xi−1 ∈ D(xi−1), xi ∈ D ′(xi ), xi+1 ∈ D(xi+1), . . . , xk ∈ D(xk)⟩

where D ′(xi ) := {a ∈ D(xi ) | ∃τ ∈ C , a = τ [xi ]}
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Outline

1. Local Consistency

2. Arc Consistency Algorithms

11



Arc Consistency
Arc Consistency rule 1 (propagator):

⟨C ; x ∈ D(x), y ∈ D(y)⟩
⟨C ; x ∈ D ′(x), y ∈ D(y)⟩

where D ′(x) := {a ∈ D(x) | ∃b ∈ D(y), (a, b) ∈ C}

This can also be written as (⋊⋉ represents the join):

D(x)← D(x) ∩ π{x}(⋊⋉(C ,D(y)))

Arc Consistency rule 2 (propagator):
⟨C ; x ∈ D(x), y ∈ D(y)⟩
⟨C ; x ∈ D(x), y ∈ D ′(y)⟩

where D ′(y) := {b ∈ D(y) | ∃a ∈ D(x), (a, b) ∈ C}

This can also be written as:

D(y)← D(y) ∩ π{y}(⋊⋉(C ,D(x)))
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Generalized Arc Consistency

(Generalized) Arc Consistency rule (propagator):

⟨C ; x1 ∈ D(x), . . . , xk ∈ D(xk)⟩
⟨C ; x1 ∈ D(x1), . . . , xi−1 ∈ D(xi−1), xi ∈ D ′(xi ), xi+1 ∈ D(xi+1), . . . , xk ∈ D(xk)⟩

where D ′(xi ) := {a ∈ D(xi ) | ∃τ ∈ C , a = τ [xi ]}

This can also be written as:

D(xi )← D(xi ) ∩ π{xi}(C ∩ πX (C)(D))
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AC1 – Reduction rule
Revision: making a constraint arc consistent by propagating the domain from a variable to anohter
Corresponds to:

D(x)← D(x) ∩ π{x}(⋊⋉(C ,D(y)))

for a given variable x and constraint C
Assume normalized network:

Complexity:O(d2) or O(rd r )
d values, r arity
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AC1 – Rules Iteration
Binary case

▶ Complexity (Mackworth and Freuder, 1986): O(end3)
e number of arcs, n variables
(ed2 each loop, a single succesful removal causes all loop again ⇝ nd number of loops)

▶ best-case = O(ed)

▶ Arc-consistency is at least O(ed2) in the worst case (see later)
▶ ⇝ too many calls to Revise
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AC3 (Macworth, 1977)
General case – Arc oriented (coarse-grained)

O(er3d r+1) time
O(er) space
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AC3
Example

P = ⟨X = (x , y , z), D = {D(x) = D(y) = {1, 2, 3, 4},D(z) = {3}},
C = {C1 ≡ x ≤ y ,C2 ≡ y ̸= z}}⟩
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AC4
Binary normalized problems – value oriented (fine grained)

counter[xi , vi , xj ]: how many supports vi has on cij
S[xj , vj ]: all values that are supported

by (xj , vj ) on cij

O(ed2) time (optimal)
O(ed2) space

O(erd r ) time for GAC
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AC4
Example

P = ⟨X = (x , y , z), DE = {D(x) = D(y) = {1, 2, 3, 4},D(z) = {3}},
C = {C1 ≡ x ≤ y ,C2 ≡ y ̸= z}}⟩
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AC6
Binary normalized problems

S[xj , vj ]: list of values (xi , vi ) currently having (xj , vj ) as
their first support

O(ed2) time
O(ed) space
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AC6
Example

P = ⟨X = (x , y , z), DE = {D(x) = D(y) = {1, 2, 3, 4},D(z) = {3}},
C = {C1 ≡ x ≤ y ,C2 ≡ y ̸= z}}⟩
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Reverse2001
Binary case — optimal coarse-grained Last(xi , vi , xj ): pointer to store vj , the smallest support in cij

O(ed2) time
O(ed) space
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Reverse2001
Example

P = ⟨X = (x , y , z), DE = {D(x) = D(y) = {1, 2, 3, 4},D(z) = {3}},
C = {C1 ≡ x ≤ y ,C2 ≡ y ̸= z}}⟩
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Limitation of Arc Consistency

Example

⟨x < y , y < z , z < x ; x , y , z ∈ {1..100000}⟩

is inconsistent.

Proof: Apply revise to (x , x < y)

⟨x < y , y < z , z < x ; x ∈ {1..99999}, y , z ∈ {1..100000}⟩,

ecc. we end in a fail.

▶ Disadvantage: large number of steps.
Run time depends on the size of the domains!

▶ Note: we could prove fail by transitivity of <.
⇝ Path consitency involves two constraints together
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