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Higher Order Consistencies

▶ arc consistency does not remove all inconsistencies: even if a CSP is arc consistent there
might be no solution

▶ arc consistency deals with each constraint separately

▶ stronger consistencies techniques are studied:
▶ path consistency (generalizes arc consistency to arbitrary binary constraints)
▶ restricted path consistency
▶ k-consistency
▶ (i , j)-consistent
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Path consistency

Given P = ⟨X ,D, C⟩ normalized:

▶ Given two variables xi , xj , the pair (vi , vj) ∈ D(xi )× D(xj) is p-path consistent iff forall
Y = (xi = xk1 , xk2 , . . . , xkp = xj) with Ckq,kq+1 ∈ C
∃τ : τ [Y ] = (vi = vk1 , . . . , vkp = vj) ∈ πY (D) and (vkq , vkq+1) ∈ Ckq,kq+1 , q = 1, . . . , p − 1

▶ the CSP P is p-path consistent iff for any (xi , xj), i ̸= j any locally consistent pair of values
(ie, satisfying all binary constraints between xi , xj) is p-path consistent.

Example

P = ⟨X = (x1, x2, x3),D(xi ) = {1, 2}, C ≡ {x1 ̸= x2, x2 ̸= x3}⟩

Not path consistent: e.g., for (x1, 1), (x3, 2) there is no x2
P = ⟨X ,D, C ∪ {x1 = x3}⟩ is path consistent (local consistency of x1, x3 removes values x1 ̸= x3)
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Alternative definition:

▶ constraint composition: Cx1,x3 = Cx1,x2 · Cx2,x3 = {(a, b) | ∃c , (a, c) ∈ Cx1,x2 , (c , b) ∈ Cx2,x3)}

▶ A normalized CSP P is 2-path consistent if for each subset {x1, x2, x3} of its variables we have
Cx1,x3 ⊆ Cx1x2 · Cx2x3

▶ Note: the sequence is arbitrary and the order irrelevant hence 6 conditions need to be
considered

▶ A CSP without binary constraints is trivially path consistent

6



Path Consistency rule 1 (propagator):

⟨Cxy ,Cxz ,Cyz ; x ∈ D(x), y ∈ D(y), z ∈ D(z)⟩
⟨C ′

xy ,Cxz ,Cyz ; x ∈ D(x), y ∈ D(y), z ∈ D(z)⟩

where C ′
xy := Cxy ∩ Cxz · Czy

Path Consistency rule 2 (propagator):

⟨Cxy ,Cxz ,Cyz ; x ∈ D(x), y ∈ D(y), z ∈ D(z)⟩
⟨Cxy ,C

′
xz ,Cyz ; x ∈ D(x), y ∈ D(y), z ∈ D(z)⟩

where C ′
xz := Cxz ∩ Cxy · Cyz

Path Consistency rule 3 (propagator):

⟨Cxy ,Cxz ,Cyz ; x ∈ D(x), y ∈ D(y), z ∈ D(z)⟩
⟨Cxy ,Cxz ,C

′
yz ; x ∈ D(x), y ∈ D(y), z ∈ D(z)⟩

where C ′
yz := Cyz ∩ Cyx · Cxz
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Example

⟨x < y , y < z , x < z ; x ∈ [0..4], y ∈ [1..5], z ∈ [6..10]⟩

is path consistent. Indeed:

Cx,z ={(a, c) | a < c , a ∈ [0..4], c ∈ [6..10]}
Cx,y ={(a, b) | a < b, a ∈ [0..4], b ∈ [1..5]}
Cy ,z ={(b, c) | b < c , b ∈ [1..5], c ∈ [6..10]}

Example

⟨x < y , y < z , x < z ; x ∈ [0..4], y ∈ [1..5], z ∈ [5..10]⟩

is not path consistent. Indeed:
Cx,z = {(a, c) | a < c , a ∈ [0..4], c ∈ [5..10]} and for 4 ∈ [0..4] and 5 ∈ [5..10] no b ∈ [1..5] such
that 4 < b and b < 5.
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p-path consistency
The p-path consistency defined earlier generalizes 2-path consistency:
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2-path consistency if the path has length 2

▶ CSP is p-path consistent ⇐⇒ 2-path consistent (Montanari, 1974). Proof by induction.

▶ Hence, sufficient to enforce consistency on paths of length 2.

▶ path consistency algorithms work with path of length two only and, like AC algorithms, make
these paths consistent with revisions.

▶ Even if PC eliminates more inconsistencies than AC, seldom used in practice because of
efficiency issues

▶ PC requires extensional representation of constraints and hence huge amount memory.

▶ Restricted PC does AC and PC only when a variable is left with one value.
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k-consistency

Given P = ⟨X ,D, C⟩, and set of variables Y ⊆ X with |Y | = k − 1:

▶ a locally consistent instantiation I on Y is k-consistent iff for any kth variable xik ∈ X \ Y ∃ a
value vik ∈ D(xik ) : I ∪ {xik , vik} is locally consistent

▶ the CSP P is k-consistent iff for all Y of k − 1 variables any locally consistent I on Y is
k-consistent.

Example

In general CSP, arc-consistent ̸= 2-consistent

D(x1) = D(x2) = {1, 2, 3}, x1 ≤ x2, x1 ̸= x2

arc consistent, every value has a support on one constraint
not 2-consistent, x1 = 3 cannot be extended to x2 and x2 = 1 not to x1 with both constraints
arc consistency: each binary constraint separately taken is not violated
2-consistency: any constraint is not violated
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Example

D(xi ) = {1, 2}, i = 1, 2, 3; C = {(1, 1, 1), (2, 2, 2)}

is P path consistent?
Yes because no binary constraint such that X (C ) ⊆ Y
is P 3-consistent? No, because (x1, 1), (x2, 2) is locally consistent but cannot be extended
consistently to x3.

Example

⟨D(x) = [1..2],D(y) = [1..2],D(z) = [2..4]; C = {x ̸= y , x + y = z}⟩

▶ 1-consistent? Yes
▶ 2-consistent? Yes
▶ 3-consistent? No, (y , 2), (z , 2) not 3-consist. 12



▶ A node consistent normalized CSP is arc consistent iff it is 2-consistent

▶ A node consistent normalized binary CSP is path consistent iff it is 3-consistent

That is, if the CSP is normalized:

▶ node consistency corresponds to 1-consistency

▶ arc consistency corresponds to 2-consistency

▶ path consistency corresponds to 3-consistency
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However, in general CSP, no relationship between k-consistency and l-consistency for k ̸= l exists:

▶ for any k > 1, there exists an inconsistent CSP on k variables that is (k − 1)-consistent but
not k-consistent
Eg.: ⟨x1 ̸= x2, x2 ̸= x3, x1 ̸= x3; x1 ∈ {0, 1}, x2 ∈ {0, 1}, x3 ∈ {0, 1}⟩
inconsistent, 2-consistent, not 3-consistent

▶ for any k > 2, there exists a consistent CSP on k variables that is not (k − 1)-consistent but is
k-consistent
Eg.: ⟨x1 ̸= x2, x1 ̸= x3; x1 ∈ {a, b}, x2 ∈ {a}, ..., xk ∈ {a}⟩
every (k − 1)-consistent instantiation is a restriction of the consistent instantiation
(b, a, a, . . . , a)

▶ for any k > 2, there exists an inconsistent CSP on k variables that is k-consistent
Eg.: ⟨x1 ̸= x2, x2 ̸= x3, x1 ̸= x3; x1 ∈ {1}, x2 ∈ {1}, x3 ∈ {1}⟩
2-consistent but not 3-consistent

▶ for any k > 2, there exists a consistent CSP on k variables that is not k-consistent
⟨x1 ̸= x2, x2 ̸= x3, x1 ̸= x3; x1 ∈ {1}, x2 ∈ {1, 2, 3}, x3 ∈ {1, 2, 3}⟩
consistent, 2-consistent, not 3-consistent (consider l.c. instanziation (x2, 1)(x3, 2))
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▶ P is strongly k-consistent iff it is j-consistent ∀j ≤ k

▶ constructing one requires O(nkdk) time and O(nk−1dk−1) space.

▶ if P is strongly n-consistent then it is globally consistent

▶ (i , j)-consistent: any consistent instantiation of i different variables can be extended to a
consistent instantiation including any j additional variables
k consistency ≡ (k − 1, 1) consistent

▶ strongly (i , j)-consistent
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Weaker arc consistencies

▶ reduce calls to Revise in coarse-grained algorithms (Forward Checking)
▶ reduce amount of work of Revise (Bound consistency)
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Directional Arc Consistency

▶ Uses some linear ordering on the considered variables.

▶ Requires existence of supports only ’in one direction’

▶ A binary CSP P is directionally arc consistent (DAC) according to ordering o = (x1, . . . , xkn)
on X , where (k1, . . . , kn) is a permutation of (1, . . . , n) iff for all Cxi ,xj ∈ C, if xi <o xj then xi
is arc consistent on Cxi ,xj .

▶ CSP is dir. arc consistent if it is closed under application of arc consistency rule 1.

Example

⟨x < y ; x ∈ [2..10], y ∈ [3..7]⟩

not arc consistent but directionally arc consistent for the order (y , x)
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Forward checking

Given P binary and Y ⊆ X : |D(xi )| = 1 ∀xi ∈ Y :

▶ P is forward checking consistent according to instantiation I on Y iff it is locally consistent
and for all xi ∈ Y , for all xj ∈ X \ Y and for all C (xi , xj) ∈ C is arc consistent on C (xi , xj).

(all constraints between assigned and not assigned variables are consistent.)

▶ Example:

⟨D(x) = [1..3],D(y) = [2, 3],D(z) = [1..3]; C = {x < y , y < z}⟩

after x = 1
▶ O(ed) time (Revise called only once per arc)
▶ Extension to non-binary constraints
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Other Lookahead Filtering
Defined only by procedure, not by fixed point definition

Algorithm partial lookahead and full lookahead (aka Maintaining arc consistency)

Example:

⟨D(x) = [1..3],D(y) = [2, 3],D(z) = [1..3]; C = {x < y , y < z}⟩

after x = 1:
PL: D(x) = {1},D(y) = {2},D(z) = {1, 2, 3}. FL: D(x) = {1},D(y) = {2},D(z) = {3}
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Bound consistency

▶ domains inherit total ordering on Z,
minD(x) and maxD(x) called bounds of D(x)

▶ Given P and C ,
a bounded support τ on C is a tuple that satisfies C and such that for all xi ∈ X (C ),
minD(xi ) ≤ τ [xi ] ≤ maxD(xi ),
that is, τ ∈ C ∩ πX (C)(D

I ) (instead of D)

D I (xi ) = {v ∈ Z | min
D

(xi ) ≤ v ≤ max
D

(xi )}

▶ C is bound(Z) consistent iff ∀xi ∈ X its bounds belong to a bounded support on C

▶ C is range consistent iff ∀xi ∈ X all its values belong to a bounded support on C

▶ C is bound(D) consistent iff ∀xi ∈ X its bounds belong to a support on C
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▶ GAC < (bound(D), range) < bound(Z) (strictly stronger)
bound(D) and range are incomparable

▶ most of the time, gain in efficiency

Example

sum(x1, . . . , xk , k)

GAC is NP-complete (reduction from Subset Sum problem, generalization of number partitioning).
But bound(Z) is polynomial: test ∀1 ≤ i ≤ n:
minD(xi ) ≥ k −

∑
j ̸=i maxD(xj)

maxD(xi ) ≤ k −
∑

j ̸=i minD(xj)
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Local Consistencies in MiniZinc

Specification made available through: Constraint annotations.
Annotations can be placed on constraints advising the solver how the constraint should be
implemented. Here are some constraint annotations supported by some solvers:

Example:� �
% ’domain’ : use domain consistency for this constraint :
% 2x + 3y = 10
constraint int_lin_eq([2, 3], [x, y], 10) :: domain_propagation� �
value_propagation Forward chacking
bounds_propagation Use integer bounds propagation (bound(Z)).
domain_propagation Use domain propagation.
priority(k) where k is an integer constant indicating propagator priority.

Others:
boundsR, Use real bounds propagation.
boundsD, A tighter version of boundsZ where support for the bounds must exist.
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Gecode

In Gecode we have the consistency levels called domain, bound and value. They correspond to:

▶ Generalized arc consistency,
▶ bound(Z) (check on each constraint) and
▶ Forward checking,

respectively.
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