DM841 Constraint Programming

Further Notions of Local Consistency

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Higher Order Consistencies

2. Weaker arc consistencies

Outline

1. Higher Order Consistencies

2. Weaker arc consistencies

Higher Order Consistencies

arc consistency does not remove all inconsistencies: even if a CSP is arc consistent there might be no solution

arc consistency deals with each constraint separately

- stronger consistencies techniques are studied:
 - path consistency (generalizes arc consistency to arbitrary binary constraints)
 - restricted path consistency
 - k-consistency
 - ► (*i*, *j*)-consistent

Path consistency

Given $\mathcal{P} = \langle X, \mathcal{D}, \mathcal{C} \rangle$ normalized:

- ► Given two variables x_i, x_j , the pair $(v_i, v_j) \in D(x_i) \times D(x_j)$ is *p*-path consistent iff forall $Y = (x_i = x_{k_1}, x_{k_2}, \dots, x_{k_p} = x_j)$ with $C_{k_q, k_{q+1}} \in C$ $\exists \tau : \tau[Y] = (v_i = v_{k_1}, \dots, v_{k_p} = v_j) \in \pi_Y(D)$ and $(v_{k_q}, v_{k_{q+1}}) \in C_{k_q, k_{q+1}}$, $q = 1, \dots, p-1$
- ► the CSP P is p-path consistent iff for any (x_i, x_j), i ≠ j any locally consistent pair of values (ie, satisfying all binary constraints between x_i, x_j) is p-path consistent.

Example

$$\mathcal{P} = \langle X = (x_1, x_2, x_3), D(x_i) = \{1, 2\}, \mathcal{C} \equiv \{x_1 \neq x_2, x_2 \neq x_3\} \rangle$$

Not path consistent: e.g., for $(x_1, 1), (x_3, 2)$ there is no x_2 $\mathcal{P} = \langle X, \mathcal{D}, \mathcal{C} \cup \{x_1 = x_3\}\rangle$ is path consistent (local consistency of x_1, x_3 removes values $x_1 \neq x_3$)

Alternative definition:

- ▶ constraint composition: $C_{x_1,x_3} = C_{x_1,x_2} \cdot C_{x_2,x_3} = \{(a,b) \mid \exists c, (a,c) \in C_{x_1,x_2}, (c,b) \in C_{x_2,x_3})\}$
- A normalized CSP \mathcal{P} is 2-path consistent if for each subset $\{x_1, x_2, x_3\}$ of its variables we have $C_{x_1, x_3} \subseteq C_{x_1 x_2} \cdot C_{x_2 x_3}$
- Note: the sequence is arbitrary and the order irrelevant hence 6 conditions need to be considered
- A CSP without binary constraints is trivially path consistent

Path Consistency rule 1 (propagator):

$$\begin{array}{l} \langle \mathcal{C}_{xy}, \mathcal{C}_{xz}, \mathcal{C}_{yz}; x \in D(x), y \in D(y), z \in D(z) \rangle \\ \langle \mathcal{C}_{xy}', \mathcal{C}_{xz}, \mathcal{C}_{yz}; x \in D(x), y \in D(y), z \in D(z) \rangle \end{array}$$

where $C'_{xy} := C_{xy} \cap C_{xz} \cdot C_{zy}$ Path Consistency rule 2 (propagator):

$$\frac{\langle C_{xy}, C_{xz}, C_{yz}; x \in D(x), y \in D(y), z \in D(z) \rangle}{\langle C_{xy}, C'_{xz}, C_{yz}; x \in D(x), y \in D(y), z \in D(z) \rangle}$$

where $C'_{xz} := C_{xz} \cap C_{xy} \cdot C_{yz}$ Path Consistency rule 3 (propagator):

 $\frac{\langle C_{xy}, C_{xz}, C_{yz}; x \in D(x), y \in D(y), z \in D(z) \rangle}{\langle C_{xy}, C_{xz}, C'_{yz}; x \in D(x), y \in D(y), z \in D(z) \rangle}$

where $C'_{yz} := C_{yz} \cap C_{yx} \cdot C_{xz}$

Example

$$\langle x < y, y < z, x < z; x \in [0..4], y \in [1..5], z \in [6..10] \rangle$$

is path consistent. Indeed:

$$C_{x,z} = \{(a,c) \mid a < c, a \in [0..4], c \in [6..10]\}$$

$$C_{x,y} = \{(a,b) \mid a < b, a \in [0..4], b \in [1..5]\}$$

$$C_{y,z} = \{(b,c) \mid b < c, b \in [1..5], c \in [6..10]\}$$

Example

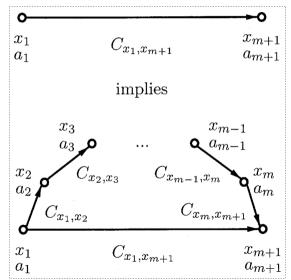
$$\langle x < y, y < z, x < z; x \in [0..4], y \in [1..5], z \in [5..10] \rangle$$

is not path consistent. Indeed:

 $C_{x,z} = \{(a,c) \mid a < c, a \in [0..4], c \in [5..10]\}$ and for $4 \in [0..4]$ and $5 \in [5..10]$ no $b \in [1..5]$ such that 4 < b and b < 5.

p-path consistency

The p-path consistency defined earlier generalizes 2-path consistency:



2-path consistency if the path has length 2

- ▶ CSP is *p*-path consistent ⇔ 2-path consistent (Montanari, 1974). Proof by induction.
- ▶ Hence, sufficient to enforce consistency on paths of length 2.
- path consistency algorithms work with path of length two only and, like AC algorithms, make these paths consistent with revisions.
- Even if PC eliminates more inconsistencies than AC, seldom used in practice because of efficiency issues
- ▶ PC requires extensional representation of constraints and hence huge amount memory.
- ▶ Restricted PC does AC and PC only when a variable is left with one value.

k-consistency

Given $\mathcal{P} = \langle X, \mathcal{D}, \mathcal{C} \rangle$, and set of variables $Y \subseteq X$ with |Y| = k - 1:

- ▶ a locally consistent instantiation *I* on *Y* is *k*-consistent iff for any *k*th variable $x_{i_k} \in X \setminus Y \exists$ a value $v_{i_k} \in D(x_{i_k}) : I \cup \{x_{i_k}, v_{i_k}\}$ is locally consistent
- ▶ the CSP \mathcal{P} is *k*-consistent iff for all *Y* of *k* − 1 variables any locally consistent *l* on *Y* is *k*-consistent.

Example

In general CSP, arc-consistent \neq 2-consistent

 $D(x_1) = D(x_2) = \{1, 2, 3\}, \qquad x_1 \le x_2, x_1 \ne x_2$

arc consistent, every value has a support on one constraint not 2-consistent, $x_1 = 3$ cannot be extended to x_2 and $x_2 = 1$ not to x_1 with both constraints arc consistency: each binary constraint separately taken is not violated 2-consistency: any constraint is not violated

Example

$$D(x_i) = \{1, 2\}, i = 1, 2, 3; C = \{(1, 1, 1), (2, 2, 2)\}$$

is \mathcal{P} path consistent? Yes because no binary constraint such that $X(C) \subseteq Y$ is \mathcal{P} 3-consistent? No, because $(x_1, 1), (x_2, 2)$ is locally consistent but cannot be extended consistently to x_3 .

Example

$$(D(x) = [1..2], D(y) = [1..2], D(z) = [2..4]; C = \{x \neq y, x + y = z\})$$

- 1-consistent? Yes
- 2-consistent? Yes

▶ 3-consistent? No, (y, 2), (z, 2) not 3-consist.

- A node consistent normalized CSP is arc consistent iff it is 2-consistent
- ▶ A node consistent normalized binary CSP is path consistent iff it is 3-consistent

That is, if the CSP is normalized:

- node consistency corresponds to 1-consistency
- arc consistency corresponds to 2-consistency
- path consistency corresponds to 3-consistency

However, in general CSP, no relationship between k-consistency and l-consistency for $k \neq l$ exists:

For any k > 1, there exists an inconsistent CSP on k variables that is (k − 1)-consistent but not k-consistent Eg.: (x₁ ≠ x₂, x₂ ≠ x₃, x₁ ≠ x₃; x₁ ∈ {0,1}, x₂ ∈ {0,1}, x₃ ∈ {0,1})

inconsistent, 2-consistent, not 3-consistent

- ▶ for any k > 2, there exists a consistent CSP on k variables that is not (k − 1)-consistent but is k-consistent
 - Eg.: $\langle x_1 \neq x_2, x_1 \neq x_3; x_1 \in \{a, b\}, x_2 \in \{a\}, ..., x_k \in \{a\} \rangle$ every (k - 1)-consistent instantiation is a restriction of the consistent instantiation (b, a, a, ..., a)
- For any k > 2, there exists an inconsistent CSP on k variables that is k-consistent Eg.: (x₁ ≠ x₂, x₂ ≠ x₃, x₁ ≠ x₃; x₁ ∈ {1}, x₂ ∈ {1}, x₃ ∈ {1}) 2-consistent but not 3-consistent
- For any k > 2, there exists a consistent CSP on k variables that is not k-consistent ⟨x₁ ≠ x₂, x₂ ≠ x₃, x₁ ≠ x₃; x₁ ∈ {1}, x₂ ∈ {1, 2, 3}, x₃ ∈ {1, 2, 3}⟩ consistent, 2-consistent, not 3-consistent (consider l.c. instanziation (x₂, 1)(x₃, 2))

- ▶ \mathcal{P} is strongly *k*-consistent iff it is *j*-consistent $\forall j \leq k$
- constructing one requires $O(n^k d^k)$ time and $O(n^{k-1} d^{k-1})$ space.
- if \mathcal{P} is strongly *n*-consistent then it is globally consistent
- (i, j)-consistent: any consistent instantiation of i different variables can be extended to a consistent instantiation including any j additional variables
 k consistency ≡ (k − 1, 1) consistent
- strongly (i, j)-consistent

Outline

1. Higher Order Consistencies

2. Weaker arc consistencies

Weaker arc consistencies

- ▶ reduce calls to Revise in coarse-grained algorithms (Forward Checking)
- reduce amount of work of Revise (Bound consistency)

Directional Arc Consistency

- Uses some linear ordering on the considered variables.
- Requires existence of supports only 'in one direction'
- ► A binary CSP P is directionally arc consistent (DAC) according to ordering o = (x₁,..., x_{k_n}) on X, where (k₁,..., k_n) is a permutation of (1,..., n) iff for all C_{x_i,x_j} ∈ C, if x_i <_o x_j then x_i is arc consistent on C_{x_i,x_j}.
- ▶ CSP is dir. arc consistent if it is closed under application of arc consistency rule 1.

Example

 $\langle x < y ; x \in [2..10], y \in [3..7] \rangle$

not arc consistent but directionally arc consistent for the order (y, x)

Forward checking

Given \mathcal{P} binary and $Y \subseteq X : |D(x_i)| = 1 \ \forall x_i \in Y$:

▶ \mathcal{P} is forward checking consistent according to instantiation *I* on *Y* iff it is locally consistent and for all $x_i \in Y$, for all $x_j \in X \setminus Y$ and for all $C(x_i, x_j) \in C$ is arc consistent on $C(x_i, x_j)$.

(all constraints between assigned and not assigned variables are consistent.)

Example:

$$\langle D(x) = [1..3], D(y) = [2,3], D(z) = [1..3]; C = \{x < y, y < z\} \rangle$$

after x = 1

- O(ed) time (Revise called only once per arc)
- Extension to non-binary constraints

Other Lookahead Filtering

Defined only by procedure, not by fixed point definition

Algorithm partial lookahead and full lookahead (aka Maintaining arc consistency)

```
procedure PL(N, Y, x_i);

1 FC(N, Y, x_i);

2 foreach j \leftarrow i + 1 to n do

3 foreach k \leftarrow j + 1 to n | c_{jk} \in C_N do

4 if not Revise(x_j, c_{jk}) then return false

procedure FL(N, Y, x_i);

5 FC(N, Y, x_i);

6 foreach j \leftarrow i + 1 to n do

7 foreach k \leftarrow i + 1 to n, k \neq j | c_{jk} \in C_N do

8 if not Revise(x_j, c_{jk}) then return false
```

Example:

 $(D(x) = [1..3], D(y) = [2,3], D(z) = [1..3]; C = \{x < y, y < z\})$

after x = 1:

PL: $D(x) = \{1\}, D(y) = \{2\}, D(z) = \{1, 2, 3\}.$ FL: $D(x) = \{1\}, D(y) = \{2\}, D(z) = \{3\}$

Bound consistency

- domains inherit total ordering on Z, min_D(x) and max_D(x) called bounds of D(x)
- ▶ Given \mathcal{P} and C, a bounded support τ on C is a tuple that satisfies C and such that for all $x_i \in X(C)$, $\min_D(x_i) \leq \tau[x_i] \leq \max_D(x_i)$, that is, $\tau \in C \cap \pi_{X(C)}(D')$ (instead of D)

$$D^{I}(x_{i}) = \{v \in \mathsf{Z} \mid \min_{D}(x_{i}) \leq v \leq \max_{D}(x_{i})\}$$

- C is bound(\mathbb{Z}) consistent iff $\forall x_i \in X$ its bounds belong to a bounded support on C
- C is range consistent iff $\forall x_i \in X$ all its values belong to a bounded support on C
- C is bound(D) consistent iff $\forall x_i \in X$ its bounds belong to a support on C

- ► GAC < (bound(D), range) < bound(Z) (strictly stronger) bound(D) and range are incomparable
- most of the time, gain in efficiency

Example

$\operatorname{sum}(x_1,\ldots,x_k,k)$

GAC is NP-complete (reduction from Subset Sum problem, generalization of number partitioning). But bound(\mathbb{Z}) is polynomial: test $\forall 1 \leq i \leq n$: $\min_D(x_i) \geq k - \sum_{j \neq i} \max_D(x_j)$ $\max_D(x_i) \leq k - \sum_{j \neq i} \min_D(x_j)$

Local Consistencies in MiniZinc

Specification made available through: Constraint annotations.

Annotations can be placed on constraints advising the solver how the constraint should be implemented. Here are some constraint annotations supported by some solvers:

Example:

% 'domain': use domain consistency for this constraint: % 2x + 3y = 10 constraint int_lin_eq([2, 3], [x, y], 10) :: domain_propagation

value_propagation	Forward chacking
bounds_propagation	Use integer bounds propagation (bound(\mathbb{Z})).
domain_propagation	Use domain propagation.
priority(k)	where k is an integer constant indicating propagator priority.

Others:

boundsR, Use real bounds propagation.

boundsD, A tighter version of boundsZ where support for the bounds must exist.

Gecode

In Gecode we have the consistency levels called domain, bound and value. They correspond to:

Generalized arc consistency,

- bound(\mathbb{Z}) (check on each constraint) and
- ► Forward checking,

respectively.

References

- Apt K.R. (2003). Principles of Constraint Programming. Cambridge University Press.
- Barták R. (2001). Theory and practice of constraint propagation. In *Proceedings of CPDC2001* Workshop, pp. 7–14. Gliwice.
- Bessiere C. (2006). **Constraint propagation**. In *Handbook of Constraint Programming*, edited by F. Rossi, P. van Beek, and T. Walsh, chap. 3. Elsevier. Also as Technical Report LIRMM 06020, March 2006.