
DM841

Constraint Programming

Further Notions of Local Consistency

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline

1. Higher Order Consistencies

2. Weaker arc consistencies

2

Outline

1. Higher Order Consistencies

2. Weaker arc consistencies

3

Higher Order Consistencies

▶ arc consistency does not remove all inconsistencies: even if a CSP is arc consistent there
might be no solution

▶ arc consistency deals with each constraint separately

▶ stronger consistencies techniques are studied:
▶ path consistency (generalizes arc consistency to arbitrary binary constraints)
▶ restricted path consistency
▶ k-consistency
▶ (i , j)-consistent

4

Path consistency

Given P = ⟨X ,D, C⟩ normalized:

▶ Given two variables xi , xj , the pair (vi , vj) ∈ D(xi)× D(xj) is p-path consistent iff forall
Y = (xi = xk1 , xk2 , . . . , xkp = xj) with Ckq,kq+1 ∈ C
∃τ : τ [Y] = (vi = vk1 , . . . , vkp = vj) ∈ πY (D) and (vkq , vkq+1) ∈ Ckq,kq+1 , q = 1, . . . , p − 1

▶ the CSP P is p-path consistent iff for any (xi , xj), i ̸= j any locally consistent pair of values
(ie, satisfying all binary constraints between xi , xj) is p-path consistent.

Example

P = ⟨X = (x1, x2, x3),D(xi) = {1, 2}, C ≡ {x1 ̸= x2, x2 ̸= x3}⟩

Not path consistent: e.g., for (x1, 1), (x3, 2) there is no x2
P = ⟨X ,D, C ∪ {x1 = x3}⟩ is path consistent (local consistency of x1, x3 removes values x1 ̸= x3)

5

Alternative definition:

▶ constraint composition: Cx1,x3 = Cx1,x2 · Cx2,x3 = {(a, b) | ∃c , (a, c) ∈ Cx1,x2 , (c , b) ∈ Cx2,x3)}

▶ A normalized CSP P is 2-path consistent if for each subset {x1, x2, x3} of its variables we have
Cx1,x3 ⊆ Cx1x2 · Cx2x3

▶ Note: the sequence is arbitrary and the order irrelevant hence 6 conditions need to be
considered

▶ A CSP without binary constraints is trivially path consistent

6

Path Consistency rule 1 (propagator):

⟨Cxy ,Cxz ,Cyz ; x ∈ D(x), y ∈ D(y), z ∈ D(z)⟩
⟨C ′

xy ,Cxz ,Cyz ; x ∈ D(x), y ∈ D(y), z ∈ D(z)⟩

where C ′
xy := Cxy ∩ Cxz · Czy

Path Consistency rule 2 (propagator):

⟨Cxy ,Cxz ,Cyz ; x ∈ D(x), y ∈ D(y), z ∈ D(z)⟩
⟨Cxy ,C

′
xz ,Cyz ; x ∈ D(x), y ∈ D(y), z ∈ D(z)⟩

where C ′
xz := Cxz ∩ Cxy · Cyz

Path Consistency rule 3 (propagator):

⟨Cxy ,Cxz ,Cyz ; x ∈ D(x), y ∈ D(y), z ∈ D(z)⟩
⟨Cxy ,Cxz ,C

′
yz ; x ∈ D(x), y ∈ D(y), z ∈ D(z)⟩

where C ′
yz := Cyz ∩ Cyx · Cxz

7

Example

⟨x < y , y < z , x < z ; x ∈ [0..4], y ∈ [1..5], z ∈ [6..10]⟩

is path consistent. Indeed:

Cx,z ={(a, c) | a < c , a ∈ [0..4], c ∈ [6..10]}
Cx,y ={(a, b) | a < b, a ∈ [0..4], b ∈ [1..5]}
Cy ,z ={(b, c) | b < c , b ∈ [1..5], c ∈ [6..10]}

Example

⟨x < y , y < z , x < z ; x ∈ [0..4], y ∈ [1..5], z ∈ [5..10]⟩

is not path consistent. Indeed:
Cx,z = {(a, c) | a < c , a ∈ [0..4], c ∈ [5..10]} and for 4 ∈ [0..4] and 5 ∈ [5..10] no b ∈ [1..5] such
that 4 < b and b < 5.

8

p-path consistency
The p-path consistency defined earlier generalizes 2-path consistency:

9

2-path consistency if the path has length 2

▶ CSP is p-path consistent ⇐⇒ 2-path consistent (Montanari, 1974). Proof by induction.

▶ Hence, sufficient to enforce consistency on paths of length 2.

▶ path consistency algorithms work with path of length two only and, like AC algorithms, make
these paths consistent with revisions.

▶ Even if PC eliminates more inconsistencies than AC, seldom used in practice because of
efficiency issues

▶ PC requires extensional representation of constraints and hence huge amount memory.

▶ Restricted PC does AC and PC only when a variable is left with one value.

10

k-consistency

Given P = ⟨X ,D, C⟩, and set of variables Y ⊆ X with |Y | = k − 1:

▶ a locally consistent instantiation I on Y is k-consistent iff for any kth variable xik ∈ X \ Y ∃ a
value vik ∈ D(xik) : I ∪ {xik , vik} is locally consistent

▶ the CSP P is k-consistent iff for all Y of k − 1 variables any locally consistent I on Y is
k-consistent.

Example

In general CSP, arc-consistent ̸= 2-consistent

D(x1) = D(x2) = {1, 2, 3}, x1 ≤ x2, x1 ̸= x2

arc consistent, every value has a support on one constraint
not 2-consistent, x1 = 3 cannot be extended to x2 and x2 = 1 not to x1 with both constraints
arc consistency: each binary constraint separately taken is not violated
2-consistency: any constraint is not violated

11

Example

D(xi) = {1, 2}, i = 1, 2, 3; C = {(1, 1, 1), (2, 2, 2)}

is P path consistent?
Yes because no binary constraint such that X (C) ⊆ Y
is P 3-consistent? No, because (x1, 1), (x2, 2) is locally consistent but cannot be extended
consistently to x3.

Example

⟨D(x) = [1..2],D(y) = [1..2],D(z) = [2..4]; C = {x ̸= y , x + y = z}⟩

▶ 1-consistent? Yes
▶ 2-consistent? Yes
▶ 3-consistent? No, (y , 2), (z , 2) not 3-consist. 12

▶ A node consistent normalized CSP is arc consistent iff it is 2-consistent

▶ A node consistent normalized binary CSP is path consistent iff it is 3-consistent

That is, if the CSP is normalized:

▶ node consistency corresponds to 1-consistency

▶ arc consistency corresponds to 2-consistency

▶ path consistency corresponds to 3-consistency

13

However, in general CSP, no relationship between k-consistency and l-consistency for k ̸= l exists:

▶ for any k > 1, there exists an inconsistent CSP on k variables that is (k − 1)-consistent but
not k-consistent
Eg.: ⟨x1 ̸= x2, x2 ̸= x3, x1 ̸= x3; x1 ∈ {0, 1}, x2 ∈ {0, 1}, x3 ∈ {0, 1}⟩
inconsistent, 2-consistent, not 3-consistent

▶ for any k > 2, there exists a consistent CSP on k variables that is not (k − 1)-consistent but is
k-consistent
Eg.: ⟨x1 ̸= x2, x1 ̸= x3; x1 ∈ {a, b}, x2 ∈ {a}, ..., xk ∈ {a}⟩
every (k − 1)-consistent instantiation is a restriction of the consistent instantiation
(b, a, a, . . . , a)

▶ for any k > 2, there exists an inconsistent CSP on k variables that is k-consistent
Eg.: ⟨x1 ̸= x2, x2 ̸= x3, x1 ̸= x3; x1 ∈ {1}, x2 ∈ {1}, x3 ∈ {1}⟩
2-consistent but not 3-consistent

▶ for any k > 2, there exists a consistent CSP on k variables that is not k-consistent
⟨x1 ̸= x2, x2 ̸= x3, x1 ̸= x3; x1 ∈ {1}, x2 ∈ {1, 2, 3}, x3 ∈ {1, 2, 3}⟩
consistent, 2-consistent, not 3-consistent (consider l.c. instanziation (x2, 1)(x3, 2))

14

▶ P is strongly k-consistent iff it is j-consistent ∀j ≤ k

▶ constructing one requires O(nkdk) time and O(nk−1dk−1) space.

▶ if P is strongly n-consistent then it is globally consistent

▶ (i , j)-consistent: any consistent instantiation of i different variables can be extended to a
consistent instantiation including any j additional variables
k consistency ≡ (k − 1, 1) consistent

▶ strongly (i , j)-consistent

16

Outline

1. Higher Order Consistencies

2. Weaker arc consistencies

17

Weaker arc consistencies

▶ reduce calls to Revise in coarse-grained algorithms (Forward Checking)
▶ reduce amount of work of Revise (Bound consistency)

18

Directional Arc Consistency

▶ Uses some linear ordering on the considered variables.

▶ Requires existence of supports only ’in one direction’

▶ A binary CSP P is directionally arc consistent (DAC) according to ordering o = (x1, . . . , xkn)
on X , where (k1, . . . , kn) is a permutation of (1, . . . , n) iff for all Cxi ,xj ∈ C, if xi <o xj then xi
is arc consistent on Cxi ,xj .

▶ CSP is dir. arc consistent if it is closed under application of arc consistency rule 1.

Example

⟨x < y ; x ∈ [2..10], y ∈ [3..7]⟩

not arc consistent but directionally arc consistent for the order (y , x)

19

Forward checking

Given P binary and Y ⊆ X : |D(xi)| = 1 ∀xi ∈ Y :

▶ P is forward checking consistent according to instantiation I on Y iff it is locally consistent
and for all xi ∈ Y , for all xj ∈ X \ Y and for all C (xi , xj) ∈ C is arc consistent on C (xi , xj).

(all constraints between assigned and not assigned variables are consistent.)

▶ Example:

⟨D(x) = [1..3],D(y) = [2, 3],D(z) = [1..3]; C = {x < y , y < z}⟩

after x = 1
▶ O(ed) time (Revise called only once per arc)
▶ Extension to non-binary constraints

20

Other Lookahead Filtering
Defined only by procedure, not by fixed point definition

Algorithm partial lookahead and full lookahead (aka Maintaining arc consistency)

Example:

⟨D(x) = [1..3],D(y) = [2, 3],D(z) = [1..3]; C = {x < y , y < z}⟩

after x = 1:
PL: D(x) = {1},D(y) = {2},D(z) = {1, 2, 3}. FL: D(x) = {1},D(y) = {2},D(z) = {3}

21

Bound consistency

▶ domains inherit total ordering on Z,
minD(x) and maxD(x) called bounds of D(x)

▶ Given P and C ,
a bounded support τ on C is a tuple that satisfies C and such that for all xi ∈ X (C),
minD(xi) ≤ τ [xi] ≤ maxD(xi),
that is, τ ∈ C ∩ πX (C)(D

I) (instead of D)

D I (xi) = {v ∈ Z | min
D

(xi) ≤ v ≤ max
D

(xi)}

▶ C is bound(Z) consistent iff ∀xi ∈ X its bounds belong to a bounded support on C

▶ C is range consistent iff ∀xi ∈ X all its values belong to a bounded support on C

▶ C is bound(D) consistent iff ∀xi ∈ X its bounds belong to a support on C

22

▶ GAC < (bound(D), range) < bound(Z) (strictly stronger)
bound(D) and range are incomparable

▶ most of the time, gain in efficiency

Example

sum(x1, . . . , xk , k)

GAC is NP-complete (reduction from Subset Sum problem, generalization of number partitioning).
But bound(Z) is polynomial: test ∀1 ≤ i ≤ n:
minD(xi) ≥ k −

∑
j ̸=i maxD(xj)

maxD(xi) ≤ k −
∑

j ̸=i minD(xj)

23

Local Consistencies in MiniZinc

Specification made available through: Constraint annotations.
Annotations can be placed on constraints advising the solver how the constraint should be
implemented. Here are some constraint annotations supported by some solvers:

Example:� �
% ’domain’ : use domain consistency for this constraint :
% 2x + 3y = 10
constraint int_lin_eq([2, 3], [x, y], 10) :: domain_propagation� �
value_propagation Forward chacking
bounds_propagation Use integer bounds propagation (bound(Z)).
domain_propagation Use domain propagation.
priority(k) where k is an integer constant indicating propagator priority.

Others:
boundsR, Use real bounds propagation.
boundsD, A tighter version of boundsZ where support for the bounds must exist.

24

Gecode

In Gecode we have the consistency levels called domain, bound and value. They correspond to:

▶ Generalized arc consistency,
▶ bound(Z) (check on each constraint) and
▶ Forward checking,

respectively.

25

References

Apt K.R. (2003). Principles of Constraint Programming. Cambridge University Press.

Barták R. (2001). Theory and practice of constraint propagation. In Proceedings of CPDC2001
Workshop, pp. 7–14. Gliwice.

Bessiere C. (2006). Constraint propagation. In Handbook of Constraint Programming, edited by F. Rossi,
P. van Beek, and T. Walsh, chap. 3. Elsevier. Also as Technical Report LIRMM 06020, March 2006.

26

	Higher Order Consistencies
	Weaker arc consistencies

