DM841 Constraint Programming

Propagation Events and Implementations

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Generic Rules Iteration

2. Systems

Outline

1. Generic Rules Iteration

2. Systems

Algorithms for constraint propagation:

- scheduling steps of atomic reduction
- termination criterion: local consistency
- ▶ How to schedule the application of reduction rules to guarantee termination?
- ► How to avoid (at low cost) the application of redundant rules?
- ► Have all derivations the same result?
- ► How can we characterize it?

Propagators

- ▶ Given \mathcal{P} a reduction rule is a function f from $\mathcal{S}_{\mathcal{P}}$ to $\mathcal{S}_{\mathcal{P}}$ for all $\mathcal{P}' \in \mathcal{S}_{\mathcal{P}}$, $f(\mathcal{P}') \in \mathcal{S}_{\mathcal{P}}$. (most cases take care of a single variable and a single constraint)
- ▶ Given \mathcal{P} a propagator f for C is a reduction rule from $\mathcal{S}_{\mathcal{P}}$ to $\mathcal{S}_{\mathcal{P}}$ that tightens only domains independently of the constraints other than C.
- ▶ A propagator f is correct for C iff it does not remove any assignment for C: $\{a \in D\} \cap C = \{a \in f(D)\} \cap C$

Systems consider set of propagators to implement a constraint (However global constraints have a single propagator.)

Example

 $input(p) = x_2$, $output(p) = x_1$

$$C \equiv x_1 \le x_2 + 1$$

$$f(D, x_1) = p(D)(x_1) = \{ n \in D(X_1) \mid n \le \max_{D} \{x_2\} + 1 \}$$

Propagators

Properties of propagators:

- ► A propagator *f* is:
 - ▶ contracting (or decreasing): for all $P \in S_P$: $f(P) \leq P$, that is: $D(f(P)) \subseteq D(P)$
- ► A propagator f can be:
 - ▶ monotonic if $\mathcal{P}_1 \leq \mathcal{P}_2 \Rightarrow f(\mathcal{P}_1) \leq f(\mathcal{P}_2)$
 - ▶ commuting if $fg(\mathcal{P}) = gf(\mathcal{P})$
 - ▶ idempotent for \mathcal{P} if $f(f(\mathcal{P})) = f(\mathcal{P})$ (weak: for some $\mathcal{P} \in \mathcal{S}_{\mathcal{P}}$, strong: for all $\mathcal{P} \in \mathcal{S}_{\mathcal{P}}$)
 - ▶ subsumed (or entailed) by \mathcal{P} iff $\forall \mathcal{P}_1 \leq \mathcal{P} : f(\mathcal{P}_1) = \mathcal{P}_1$ Eg:

$$f(D,x) = D(x) \cap \{1,2,3\}$$

implementing the domain constraint $x \in \{1,2,3\}$. After f has been executed once, there is no point to execute f again as for all D' $D' \leq f(D) \implies f(D') = D'$ (particular case when all variables are instantiated)

Example

$$\mathcal{P}_1 = \langle X = (x_1, x_2); D_1(x_1) = \{1, 2\}, D_1(x_2) = \{2\}; \mathcal{C} \equiv \{x_1 = x_2\} \rangle$$

$$\mathcal{P}_2 = \langle X = (x_1, x_2); D_2(x_1) = \{1, 2, 3\}, D_2(x_2) = \{2\}; \mathcal{C} \equiv \{x_1 = x_2\} \rangle$$

f removes values from $D(x_1)$ that have no support on C if less than half of them have support.

- $ightharpoonup f(D_2(x_1)) = \{2\}$
- ▶ $D(f(\mathcal{P}_1)) \not\subseteq D(f(\mathcal{P}_2))$ whereas $D(\mathcal{P}_1) \subseteq D(\mathcal{P}_2) \leadsto$ not monotonic

g removes one of the values from x_1 that have no support on C if such a value exists.

- $ightharpoonup g(D_2(x_1)) = \{1, 2\}, gg(D_2(x_1)) = \{2\}$
- ▶ Idempotent: whether applying more than once consecutively a propagator does not yield changes.
- ▶ Subsumed: whether even after we have changed the problem by other ways than the propagator *f* , the application of *f* does not induce changes

▶ Iteration: Let $\mathcal{P} = \langle X, \mathcal{D}, \mathcal{C} \rangle$ and $F = \{f_1, \dots, f_k\}$ a finite set of propagators on $\mathcal{S}_{\mathcal{P}}$. An iteration of F on \mathcal{P} is a sequence $\langle \mathcal{P}_0, \mathcal{P}_1, \dots \rangle$ of elements of $\mathcal{S}_{\mathcal{P}}$ defined by

$$\mathcal{P}_0 = \mathcal{P}$$

$$\vdots$$

$$\mathcal{P}_j = f_{n_j}(\mathcal{P}_{j-1})$$

$$0 > 0 \text{ and } n_i \in [1]$$

where j > 0 and $n_j \in [1, \ldots, k]$.

- $ightharpoonup \mathcal{P}$ is stable for F iff $\forall f \in F, f(\mathcal{P}) = \mathcal{P}$
- \triangleright There may be several stable \mathcal{P} but if F are monotonic then unique
- ▶ Let $\mathcal{P} = \langle X, \mathcal{D}, \mathcal{C} \rangle$ and $F = \{f_1, \dots, f_k\}$. If $\langle \mathcal{P}_0, \mathcal{P}_1, \dots \rangle$ is infinite iteration of F where each $f \in F$ is activated infinitely often then there exists $j \geq 0$ such that \mathcal{P}_j is stable for F ($\equiv j$ is finite!)
- If P is stable for F then it is its weakest simultaneous fixed point (greatest mutual fixed point of all propagators).
 A strongest simultaneous fixed point would be a solution (hence possibly not unique) which would not violate solution preservation

Iteration of Reduction Rules

```
 \begin{aligned} & \textbf{procedure } \textit{Generic-Iteration}(N,F); \\ & G \leftarrow F; \\ & \textbf{while } G \neq \emptyset \textbf{ do} \\ & \text{select and remove } g \text{ from } G; \\ & \textbf{if } N \neq g(N) \textbf{ then} \\ & update(G); \\ & N \leftarrow g(N); \\ & /^* \ update(G) \text{ adds to } G \text{ at least all functions } f \text{ in } F \setminus G \text{ for which } \\ & g(N) \neq f(g(N)) \ ^*/ \end{aligned}
```

If the propagator is contracting then Generic-Iteration terminates.

If propagator is monotonic then the final result does not change with the order in which propagators are applied.

If propagators in addition to monotonic are also idempotent and commutative then:

```
procedure Direct-Iteration(N, F);

G \leftarrow F;

while G \neq \emptyset do

select and remove g from G;

N \leftarrow g(N);
```

Iteration of Reduction Rules

Example

Recall for arc consistency:

Arc Consistency rule 1 (propagator):

$$\langle C; x \in D(x), y \in D(y) \rangle$$

 $\langle C; x \in D'(x), y \in D(y) \rangle$

where $D'(x) := \{ a \in D(x) \mid \exists b \in D(y), (a, b) \in C \}$

Set of propagators $F_{AC} = \{f_{ij} \mid x_i \in X, c_j \in C\}$ all monotonic. \Rightarrow terminates in arc consistency closure, which is fixed point for F_{AC} .

Improvements

Generic iteration is an example of propagator engine What makes it naive?

- ► Termination relies on strict contraction
- ▶ We always have to check all propagators for one that can strictly contract Ideas:
 - ► Maintain propagators which are known to be at fixpoint
 - ▶ Look at the variables that propagators actually compute with Dependency-directed propagation

Fixpoint knowledge avoids useless execution (idempotence, subsumption) knowledge provided by propagator

Improvements

Generic iteration is an example of propagator engine

```
\begin{array}{ll} \operatorname{propagate}(P_f,P_n,D) \\ 1: \ N \leftarrow P_n \\ 2: \ P \leftarrow P_f \cup P_n \\ 3: \ \mathbf{while} \ N \neq \emptyset \ \mathbf{do} \\ 4: \ \ p \leftarrow \operatorname{select}(N) \\ 5: \ \ N \leftarrow N - \{p\} \\ 6: \ \ D' \leftarrow p(D) \\ 7: \ \ M \leftarrow \{x \in \mathcal{V} \mid D(x) \neq D'(x)\} \\ 8: \ \ N \leftarrow N \cup \{p' \in P \mid \operatorname{input}(p') \cap M \neq \emptyset\} \\ 11: \ \ D \leftarrow D' \\ 12: \ \mathbf{return} \ D \end{array}
```

 P_f is set of propagators at fixed point (idempotent or subsumed)

Scheduling p: adding a propagator to the set N (not known to be at fixed point). Yet undefined how a propagator is chosen from N

Note: search can be seen as doing incremental propagation

Improvements: Events

Most solvers implement arithemitc-oriented propagators \leadsto a reduction of a domain of a variable has different implications depending on the type of reduction

Four types of **Events**:

- ▶ Any or RemValue: when a value v is removed from $D(x_i)$
- ▶ Min or IncMin: when the minimum value of $D(x_i)$ increases
- ▶ Max or DecMax: when the maximum value of $D(x_i)$ decreases
- ▶ Fix or Instantiate: when $D(x_i)$ becomes a singleton

AC3 like

Modified AC3 to handle parameter Mtype (modification type)

```
function Constraint-Propag(in X: set): Boolean :
   begin
       foreach c \in C do perform init-propag on c and update Q with relevant
       events:
       while Q \neq \emptyset do
           select and remove (x_i, c, x_j, Mtype) from Q;
           if Revise(x_i, c, (x_i, Mtype), Changes) then
               if D(x_i) = \emptyset then return false;
5
               foreach c' \in \Gamma^C(x_i), Mtype \in Changes do
6
                   foreach x_i \in X(c'), i \neq i do Q \leftarrow Q \cup \{(x_i, c', x_i, Mtupe)\}:
       return true:
   end
  /* \Gamma^{C}(x_{i}) is the set of constraints with x_{i} in their scheme */
```

The presence of $(x_j, c, x_i, Mtype)$ in Q means that x_j should be revised on c because of an Mtype change in $D(x_i)$.

Process constraint propagation differently according to the type of event

```
function revise(inout x_i; in c \equiv x_{k_1} \le x_{k_2}; in (x_j, Mtype); out Changes):
   Boolean:
   Changes \leftarrow \emptyset:
   switch Mtype do
       case RemValue
           nothing:
       case IncMin
           if j = k_1 then remove all v < min_D(x_i) from D(x_i);
       case DecMar
           if j = k_2 then remove all v > max_D(x_i) from D(x_i);
       case Instantiate
           if j = k_1 then remove all v < min_D(x_i) from D(x_i);
           else remove all v > max_D(x_i) from D(x_i);
   Changes \leftarrow \text{the types of changes performed on } D(x_i);
```

Also: for a certain constraint it can be that a given event cannot alter the other variables of the constraint. Hence it makes sense to:

6: **foreach** $c' \in \Gamma^c_{\text{Mtype}}(x_i)$, Mtype \in Changes **do** ... Example. Let $c \equiv x_1 \leq x_2$. The only events that require propagation are IncMin and

Instantiate on x_1 , and DecMax and Instantiate on x_2 .

```
3
        select and remove (x_i, c, x_i, Mtype, \Delta_i) from Q:
4
        if Revise(x_i, c, (x_i, Mtype, \Delta_i), Changes, \Delta_i) then
             if D(x_i) = \emptyset then return false:
5
             foreach c' \in \Gamma^{C}_{Mtype}(x_i), Mtype \in Changes do
6
7
                 foreach x_i \in X(c'), j \neq i do Q \leftarrow Q \cup \{(x_i, c', x_i, Mtype, \Delta_i)\}
function revise(inout x_i; in c \equiv x_{k_1} = x_{k_2} + m; in (x_i, Mtype, \Delta_i);
                                                  out Changes; out \Delta_i): Boolean :
   Changes \leftarrow \emptyset:
   switch Mtupe do
        case RemValue
            if j = k_1 then foreach v \in \Delta_j do remove (v - m) from D(x_i);
            else foreach v \in \Delta_i do remove (v + m) from D(x_i);
        case IncMin
            if j = k_1 then remove all v < min_D(x_j) - m from D(x_i);
            else remove all v < min_D(x_i) + m from D(x_i):
        case DecMax
            if i = k_1 then remove all v > max_D(x_i) - m from D(x_i):
            else remove all v > max_D(x_i) + m from D(x_i);
        case Instantiate
            if j = k_1 then assign min_D(x_i) - m to x_i;
            else assign min_D(x_i) + m to x_i:
   Changes \leftarrow \text{the types of changes performed};
   \Delta_i \leftarrow \text{all values removed from } D(x_i);
```

More Optimization

Priorities Choose propagator

- ► according to cost: cheapest first
- ► according to expected impact
- ▶ general (queue): last-in last-out (starvation avoided), first-in first-out

Propagator Rewriting

Another observation: propagator for

$$\max(x, y) = z$$

and values for x are smaller than for y Replace by propagator for y=z

Outline

1. Generic Rules Iteration

2. Systems

Architecture

- ► Detecting failure and entailment
- Domains: single data structure continously updated. constraint store ≡ domain extension D
- State restoration
- Finding dependent propagators (compute events and find propagators)
- Variables for propagators

Propagation Services

- Events
- ► Selecting next propagator

Variable Domains

- ▶ Domain representation range sequence: $s = \{[n_1, m_1], \dots, [n_k, m_k]\}$ (singly/doubly linked lists) bit vector
- Value operations x.getmin(), x.getmax(), x.hasval(), x.adjmin(n), x.adjmax(n), x.excval(n)
- ► Iterators:

```
for (IntVarValues i(x); i(); ++i)
  std::cout << i.val() << ' ';

for (IntVarRanges i(x); i(); ++i)
  std::cout << i.min() << ".." << i.max() << ' ';</pre>
```

- Domain operations
- Subscriptions (p is executed whenever the domains of one of its variables changes according to an event). Options:
 - list E_i , p_i pair event propagator that requires execution
 - ▶ a list for each event and one for each propagator
 - array of propagators partitioned by events

Domain Representation

Alternative representations are sparse sets (MiniCP) and bitvectors (with auxiliary data, such as, the min, max and size)

Operations	Range sequence	Bitvector
x.getmin()	O(1)	O(1)
x.getmax()	O(1)	O(1)
x.hasval(n)	O(r)	O(1)
x.adjmin(n)	O(r)	O(1)
x.adjmax(n)	O(r)	O(1)
$x.\operatorname{excval}(n)$	O(r)	O(v)
i.done()	O(1)	O(v)
i.value()	O(1)	O(1)
$i.\operatorname{next}()$	O(1)	O(v)

Constraint Propagation Generic (in Gecode)

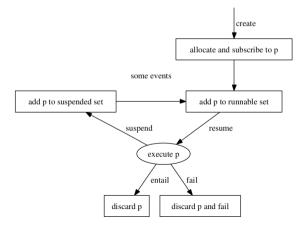
- ► Instead than directly on the variables propagators work on variable views
- A variable view (view for short) stores a reference to a variable.
- A view implements the same operations as a variable.
- Invoking an operation on the view executes the appropriate operation on the variable of the view.
- Multiple variants of a propagator can be obtained by instantiating the single generic propagator with multiple different variable views.
 Eg: in the n-queens problem the alldiff(x,x)

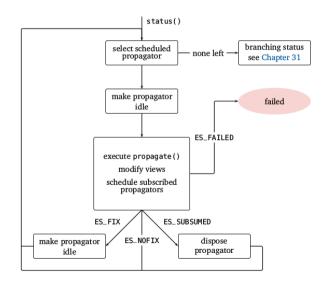
Propagators

Piece of software with some private state that implements a constraint C over some variables or parameters

The algorithm implemented is called filtering algorithm. It uses value and domain operations and raises events that cause scheduling of other propagators

Life cycle





- Idempotency: it may be costly and difficult to guarantee. Some propagators return a state:
 - ▶ fixpoint (weak idempotent, ie, with respect to x rather than for all),
 - ▶ no fixpoint (we do not know),
 - subsumed (entailed),
 - ► failure.

If we know that the propagator is strongly idempotent then we would never return "no fixpoint" as we know that for any problem the repeated application would not change the problem.

References

- Apt K.R. (2003). Principles of Constraint Programming. Cambridge University Press.
- Barták R. (2001). Theory and practice of constraint propagation. In *Proceedings of CPDC2001 Workshop*, pp. 7–14. Gliwice.
- Bessiere C. (2006). **Constraint propagation**. In *Handbook of Constraint Programming*, edited by F. Rossi, P. van Beek, and T. Walsh, chap. 3. Elsevier. Also as Technical Report LIRMM 06020, March 2006.
- Schulte C. (2011). Course notes, constraint programming (id2204), vt 2012. Unpublished.
- Schulte C. and Carlsson M. (2006). **Finite domain constraint programming systems**. In *Handbook of Constraint Programming*, edited by F. Rossi, P. van Beek, and T. Walsh. Elsevier.