
DM841

Constraint Programming

Filtering algorithms for global constraints

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline

1. Global Constraints

2. Global Constraints for Scheduling

3. Soft Constraints

4. Optimization Constraints

2

Outline

1. Global Constraints

2. Global Constraints for Scheduling

3. Soft Constraints

4. Optimization Constraints

3

Declarative and Operational Semantic

▶ Declarative Semantic: specify what the constraint means. Evaluation criteria is expressivity.

▶ Operational Semantic: specify how the constraint is computed, i.e., is kept consistent with its
declarative semantic. Evaluation criteria are efficiency and effectiveness.

Example

So far, we have defined only the Declarative Semantic of the alldifferent constraint, not its
Operational Semantic.

4

Domain Consistency

Definition
A constraint C on the variables x1, . . . , xr with respective domains D1, . . . ,Dr is called domain
consistent (or generalized/hyper-arc consistent) if for each variable xi and each value di ∈ Di there
exist compatible values in the domains of all the other variables of C , that is, there exists a tuple
(d1, . . . , di , . . . , dr) ∈ C .

In other terms: If value v is in the domain of variable x , then there exists a solution to the
constraint with value v assigned to variable x .

Examples: alldifferent (distinct), knapsack, ...

Definition

Filtering algorithm ≡ reduction rule: reduce D(xi) for 1 ≤ i ≤ r such that it still contains all values
that the variable can assume in a solution of C .

D(xi)← D(xi) ∩ {di ∈ D(xi)|D(x1 × D(xi−1)× {vi} × D(xi+1)× . . . ,D(xr)} ∩ C ̸= ∅} Generic arc
consistency algorithms are in O(erd r).

5

Consistency and Filtering Algorithms

▶ Different filtering algorithms, which must be able to:
1. Check consistency of C w.r.t. the current variable domains
2. Remove inconsistent values from the variable domains

▶ The stronger is the level of consistency, the higher is the complexity of the filtering algorithm:
Different level of consistency (domain, bound(Z), bound(D), range, value):
▶ complete filtering, optimal pruning, domain completeness ≡ domain/arc consistency
▶ partial filtering, bound completeness ≡ bound relaxed completeness

... again the alldifferent case

There exist in literature several filtering algorithms for the alldifferent constraints.

6

Decomposition Approach

A decomposition of a global constraint C is a polynomial time transformation δk(P) replacing C by
some new bounded arity constraint (and possibly new variables) while preserving the set of tuples
allowed on X (C).

Global Constraint Decomposition

Given any P = ⟨X (C),D, C = {C}⟩, δk(P) is such that
▶ X (C) ⊆ Xδk (P)

▶ for all xi ∈ X (C), D(xi) = Dδk (P)(xi)
▶ for all Cj ∈ Cδk (P), |X (Cj)| ≤ k and
▶ sol(P) = πX (C)(sol(δk(P))

Example

atmost(x1, . . . , xn, p, v) (at most p variables in x1, . . . , xn take value v).
Decomposition: n+ 1 additional variables y0, . . . , yn (xi = v ∧ yi = yi−1 + 1)∨ (xi ̸= v ∧ yi = yi−1)
for all i , 1 ≤ i ≤ n, and domains D(y0) = {0} and D(yi) = {0, . . . , p} for 1 ≤ i ≤ n.

7

These decompositions can be:

▶ preserving solutions

▶ preserving generalized arc consistency

▶ preserving the complexity of enforcing generalized arc consistency

The decomposition of atmost preserves solutions and generalized arc consistency
For the alldifferent only preserving solutions. Yet sometimes it is possible to construct a
specialized algorithm that enforces GAC in polynomial time.

8

alldifferent

alldifferent constraint
Let x1, x2, . . . , xn be variables. Then:

alldifferent(x1, ..., xn) = {(d1, ..., dn) | ∀i di ∈ D(xi), ∀i ̸= j , di ̸= dj}.

9

Complete Filtering for alldifferent

1. build value graph G = (X ,D(X),E)

2. compute maximum matching M in G

3. if |M| < |X | then return false
4. mark all arcs in oriented graph GM that are not in M as unused
5. compute SCCs in GM and mark all arcs in a SCC as used
6. perform breadth-first search in GM starting from M-free vertices, and mark all traversed arcs

as used if they belong to an even path
7. for all arcs (xi , d) in GM marked as unused do

D(xi) := D(xi) \ d
if D(xi) = ∅ then return false

8. return true
Overall complexity: O(n

√
m + (n +m) +m)

It can be updated incrementally if other constraints remove some values.

10

Example

11

Example

12

Relaxed Consistency

Definition

A constraint C on the variables x1, . . . , xm with respective domains D1, . . . ,Dm is called bound(Z)
consistent if for each variable xi and each value di ∈ {min(Di),max(Di)} there exist compatible
values between the min and max domain of all the other variables of C , that is, there exists a value
dj ∈ [min(Di),max(Di)] for all j ̸= i such that (d1, . . . , di , . . . , dk) ∈ C .

Definition
A constraint C on the variables x1, . . . , xm with respective domains D1, . . . ,Dm is called range
consistent if for each variable xi and each value di ∈ Di there exist compatible values between the
min and max domain of all the other variables of C , that is, there exists a value
dj ∈ [min(Di),max(Di)] for all j ̸= i such that (d1, . . . , di , . . . , dk) ∈ C .

(bound(D) if its bounds belong to a support on C)
GAC < (bound(D), range) < bound(Z)

13

Bound Consistency [Mehlorn&Thiel2000]

Definition (Convex Graph)

A bipartite graph G = (X ,Y ,E) is convex if the vertices of Y can be assigned distinct integers
from [1, |Y |] such that for every vertex x ∈ X , the numbers assigned to its neighbors form a
subinterval of [1, |Y |].

In convex graph we can find a matching in linear time.

14

Example

15

Survey of complexity: effectiveness and efficiency

Consistency Idea Complexity Amort. Reference(s)
arc O(n2) [VanHentenryck1989]
bound Hall O(n log n) [Puget1998]

Flows [Mehlhorn&Thiel2000]
Hall [Lopez&All2003]

O(n) [Mehlhorn&Thiel2000]
[Lopez&All2003]

range Hall O(n2) [Leconte1996]
domain Flows O(n

√
m) O(n

√
k) [Régin1994],[Costa1994]

Where n = number of variables, m =
∑

i∈1...n |Di |, and k = number of values removed.

16

Filtering cardinality

cardinality or gcc (global cardinality constraint)

Let x1, . . . , xn be assignment variables whose domains are contained in {v1, . . . , vn′} and let
{cv1 , . . . , cvn′} be count variables whose domains are sets of integers. Then

cardinality([x1, ..., xn],[cv1 , ..., cvn′]) =

{(w1, ...,wn, o1, ..., on′) | wj ∈ D(xj)∀j ,
occ(vi , (w1, ...,wn)) = oi ∈ D(cvi)∀i}.

(occ number of occurrences)

⇝ generalization of alldifferent
NP-hard to filter domain of all variables. But if constant intervals, then polynomial algorithm via
network flows. (integral feasible (s, t)-flow)

17

Midterm Evaluation

https://padlet.com/marco43/dm841_2023

18

https://padlet.com/marco43/dm841_2023

Reified Constraints
also called indicator constraints in mathematical programming

A reified constraint links a Boolean variable with the truth value of a constraint (0 is false and 1 is
true).
For example, the reified constraint isEqual(x , v , b) holds if b ≡ (x = v).
In MiniZinc: b <-> x=v with var bool: b

Its implementation captures the following inference rules:

▶ when D(b) = 1 then add constraint x = v ;
▶ when D(b) = 0 then add constraint x ̸= v ;
▶ when D(x) = v then add constraint b = 1;
▶ when v ̸∈ D(x) then add constraint b = 0.

Note: the constraint can be deactivated whenever b or x is bound or whenever v ̸∈ D(x)

19

Propagation

if b = True then
x.assign(v);
dispose C ;

else if b = False then
x.remove(v);
dispose C ;

else if x is Fix then
b = True;
dispose C ;

else if v ̸∈ D(x) then
b = False;
dispose C ;

Propagation events:
▶ x propagate on domain change (RemValue)
▶ b propagate on bind (Fix)

20

In general:

Let γ(. . .) denote the complement of γ(. . .) (not code for notγ(. . .), as CP solvers do not
implement not):
▶ When b gets fixed to 1, post the constraint γ(. . .)
▶ When b gets fixed to 0, post the constraint γ(. . .).
▶ When γ(. . .) gets subsumed, post the constraint b = 1.
▶ When γ(. . .) gets subsumed, post the constraint b = 0.

Propagation may be very poor! Reification may be hard for some predicates!

21

Constraint combination with reification
With reification, constraints can be arbitrarily combined with logical connectives: negation (¬),
disjunction (∨), conjunction (&), implication (=⇒), and equivalence (⇐⇒). However,
propagation may be very poor!

Example

The composite constraint (γ1&γ2) ∨ γ3 is modelled as

(b1 ⇐⇒ γ1) & (b2 ⇐⇒ γ2) & (b3 ⇐⇒ γ3) & (b1 · b2 = b) & (b + b3 ≥ 1)

Hence, even the constraints γ1 and γ2 must be reified.

If γ1 is x = y + 1 and γ2 is y = x + 1, then γ1 & γ2 is unsatisfiable;
however, b is then not fixed to 0 by propagation, as each propagator works individually and there is
no communication through their shared variables x and y ; hence b3 = 1 is not propagated and γ3
is not forced to hold.

22

The disjunction and negation of constraints (with
\/, xor, not, <-, ->, <->, exists, xorall, if θ then ϕ1 else ϕ2 endif
in MiniZinc often makes the solving slow.

Example

The MiniZinc disjunctive constraint� �
constraint x = 0 \/ x = 9;� �
is modelled with reification:

(b0 ⇐⇒ x = 0) & (b9 ⇐⇒ x = 9) & (b0 + b9 ≥ 1)

But it is logically equivalent to� �
constraint x in {0,9};� �
where no reification is involved and no further propagation is needed.

23

Conditionals if θ then ϕ1 else ϕ2 endif
or a comprehension, such as [i | i in rho where theta], in MiniZinc with a test θ that
depends on variables:

Example

Consider var 1..9: x and var 1..9: y for constraint� �
forall(i in 1..9 where i > x)(i > y)� �

This is a syntactic sugar for constraint� �
forall([i > y | i in 1..9 where i > x])� �
This is modelled with reification, as in constraint� �

forall(i in 1..9)(i > x -> i > y)� �
that is with a logical implication (->), hence with a hidden logical disjunction (\/): for each i ,
both sub-constraints are reified because both have variables

24

Filtering knapsack

Knapsack and Sum constraints (Linear constraints over integer variables)

Let x1, . . . , xn, z , c be integer variables:

knapsack([x1, . . . , xn], z , c) =(d1, . . . , dn, d) | di ∈ D(xi)∀i , d ∈ D(z), d ≤
∑

i=1,...,n

cidi

∩(d1, . . . , dn, d) | di ∈ D(xi)∀i , d ∈ D(z), d ≥
∑

i=1,...,n

cidi

 .

Binary Knapsack (Linear constraints over Boolean variables)∑
cixi = z , xi ∈ {0, 1} ⇝ lz ≤

∑
cixi ≤ uz

25

Variant of the subset sum problem: Given a set of numbers find a subset whose sum is 0.
Eg: −7,−3,−2, 5, 8⇝ −3− 2 + 5 = 0
10 ≤ 2x1 + 3x2 + 4x3 + 5x4 ≤ 12

26

Filtering regular

“regular” constraint

Let M = (Q,Σ, δ, q0,F) be a DFA and let X = {x1, x2, . . . , xn} be a set of variables with D(xi) ⊆ Σ
for 1 ≤ i ≤ n. Then regular(X ,M) = {(d1, ..., dn) | ∀i , di ∈ D(xi), [d1, d2, . . . , dn] ∈ L(M)}.

27

28

Other Filtering Algorithms

▶ linear

▶ element

▶ disjunctive

▶ cumulative

29

linear

n∑
i=1

aixi + b ⪋ 0 xi ∈ [li , hi]

Example

3x + 4y − 5z ≤ 7

x ≤ 7− 4y + 5z
3

=⇒ x ≤
⌊

7− 4ℓy + 5hz
3

⌋

[ℓx , hx]←−
[
ℓx ,min

(
hx ,

⌊
7− 4ℓy + 5hz

3

⌋)]

30

∑
i∈POS

aixi −
∑

i∈NEG

aixi ≤ b

x≤
b − 4y + 5z

3
=⇒ xj ≤

b −
∑

i∈POS\{j} aixi +
∑

i∈NEG aixi

aj

αj =
b −

∑
i∈POS\{j} ai li +

∑
i∈NEG aihi

aj

βj =
b −

∑
i∈POS\{j} aihi +

∑
i∈NEG ai li

aj

[lj , hj]←− [max(lx , ⌈βj⌉),min(hj , ⌊αj⌋)]

(domain consistency is NP-complete, this one is bound(Z))
31

element

▶ element(y , z , a⃗) ≡ z = ay

▶ element(y , z , x⃗) ≡ z = xy

32

Outline

1. Global Constraints

2. Global Constraints for Scheduling

3. Soft Constraints

4. Optimization Constraints

33

Scheduling Constraints

One job at a time on a machine (disjunctive machines):

“disjunctive” scheduling

Let (x1, . . . , xn) be a tuple of (integer/real)-valued variables indicating the starting time of a job j .
Let (p1, . . . , pn) be the processing times of each job.

disjunctive([x1, . . . , xn], [p1, . . . , pn]) =

{[s1, . . . , sn] | ∀i , j , i ̸= j , (si + pi ≤ sj) ∨ (sj + pj ≤ si)}

In MiniZinc:� �
predicate disjunctive(array [int] of var int: s,

array [int] of var int: d);� �
In Gecode:� �
IntArgs p(4, 2,7,4,11);
unary(home, s, p);� �

34

Digression: Job Shop
General Shop Scheduling:
▶ J = {1, . . . ,N} set of jobs; M = {1, 2, . . . ,m} set of machines
▶ Jj = {Oij | i = 1, . . . , nj} set of operations for each job
▶ pij processing times of operations Oij

▶ µij ⊆ M machine eligibilities for each operation
▶ precedence constraints among the operations
▶ one job processed per machine at a time,

one machine processing each job at a time
▶ Cj completion time of job j

=⇒ Find feasible schedule that minimize some regular function of Cj

Job shop

▶ µij = ℓ, ℓ = 1, . . . , nj and µij ̸= µi+1,j (one machine per operation)
▶ O1j → O2j → . . .→ Onj ,j precedences (without loss of generality)
▶ without repetition and with unlimited buffers

35

Task:
▶ Find a schedule S = (xij), indicating the starting times of Oij ,

such that:

it is feasible, that is,
▶ xij + pij ≤ xi+1,j for all Oij → Oi+1,j

▶ xij + pij ≤ xuv or xuv + puv ≤ xij for all operations with µij = µuv .

and has minimum makespan: min{maxj∈J(xnj ,j + pnj ,j)}.

A schedule can also be represented by an m-tuple π = (π1, π2, . . . , πm) where πi defines the
processing order on machine i .

36

37

Representation via Disjunctive Graph
▶ Often simplified notation: N = {1, . . . , n} denotes the set of operations

▶ Disjunctive graph representation: G = (N,A,E)
▶ vertices N: operations with two dummy operations 0 and n + 1 denoting “start” and “finish”.
▶ directed arcs A, conjunctions
▶ undirected arcs E , disjunctions
▶ length of (i , j) in A is pi

38

▶ A complete selection corresponds to choosing one direction for each arc of E .

▶ A complete selection that makes D acyclic corresponds to a feasible schedule and is called
consistent.

▶ Complete, consistent selection ⇔ semi-active schedule (feasible earliest start schedule).

▶ Length of longest path 0–(n + 1) in D corresponds to the makespan

39

Longest path computation

In an acyclic digraph:
▶ construct topological ordering (i < j for all i → j ∈ A)

▶ recursion:

r0 = 0
rl = max

{j | j→l∈A}
{rj + pj} for l = 1, . . . , n + 1

40

Back to Constraint Propagation: Edge Finding
Edge finding identifies jobs i that must occur first or last in a set J ∪ {i} of jobs.

i ≫ J: indicates that i starts after every jobs in J has finished
i ≪ J: indicates that i finishes before any jobs in J starts

Example:

4≫ {1, 2}
42

An O(n2) algorithm for bound propagation

43

▶ compute the Jackson preemptive schedule (JPS) for the given instance.
Moving forward in time, the job in process at each time t is the job j that has the smallest Lj
among the jobs available at t (ie, any job ℓ with t ∈ [Eℓ, Lℓ] and not finished).

▶ for each job i , do the following.
▶ Ji be the set of jobs that are not finished at time Ei in the JPS.
▶ p̄j be the processing time left for job j at time Ei in the JPS.
▶ Jik be the jobs in Ji , other than i

that have deadlines at or before job k ’s deadline:

Jik = {j ∈ Ji \ {i} | Lj ≤ Lk}

Examine the jobs k ∈ Ji (k ̸= i) in decreasing order of deadline Lk , and select the first job for
which

Lk − Ei < pi + p̄Jik

Then conclude that i ≫ Jik and update Ei to JPS(i , k), which is the latest completion time in
the JPS of the jobs in Jik

44

Not first, Not Last

A complementary type of rule identifies jobs i that cannot occur first or cannot occur last in J ∪{i}:

Exercise: verify the following deductions and compare the domain pruning wrt edge finding.
¬(4≪ {1, 2})
¬(3≪ {2})
¬(2≫ {3})

45

Scheduling Constraints: Cumulative

In Resource Constrained Project Scheduling each resource can be used at most up to its capacity:

cumulative constraints [Aggoun and Beldiceanu, 1993]

▶ pj processing time
▶ xj ∈ [Ej , Lj − pj], starting time of each job, Ej release time of job j , Lj deadline of job j

▶ cj resource consumption
▶ C limit not to be exceeded at any point in time

cumulative([xj], [pj], [cj],C) := {([sj], [pj], [cj],C) | ∀t
∑

i | si≤t≤si+pi

ci ≤ C}

With cj = 1 forall j and C = 1 ⇝ disjunctive

46

Scheduling Constraints: Cumulative

The cumulative constraint is used in scheduling problems for describing cumulative resource usage.� �
cumulative(array[int] of var int: s,

array[int] of var int: d,
array[int] of var int: r,
var int: b)� �

A set of tasks with start times s, durations d , and resource requirements r ,
must never require more than a global resource bound b at any one time.

47

Cumulative Scheduling: Example

C = 4

Verify that 3 > {1, 2} and update the domain of x3

48

Cumulative Scheduling: Propagation

If all the problem data are integral, Ej should be rounded up and Lj rounded down.

The most important filtering methods are generalizations of those seen via the concept of energy of
a job j : ej = cjpj

▶ edge finding: checks whether the total energy demand exceeds the supply, which is the
product of the time interval and the resource limit C . It can be done in O(n3)

▶ extended edge finding

▶ not-first/not-last rules

▶ energetic reasoning

49

Edge Finding

It deduces that one job must finish after certain others finish (weaker than the previous: must start
after others finish)
i > J: i must finish after all in J finished
i < J: i must start before any in J starts

if J requires total energy eJ , then the time interval [t1, t2] in which they are scheduled must have a
length of at least eJ/C .

Rule (a): if i does not finish after all the jobs in J finished, then the time interval from EJ∪{i} to
LJ must cover the energy demand ei + eJ of all the jobs.

50

Edge Finding: Domain Update

If eJ exceeds the energy available
between EJ and LJ within a resource
limit of C − ci , then at some time in
the schedule the jobs in J must
consume more resource than C − ci .

Since the excess energy is

R(J, ci) = eJ − (C − ci)(LJ − EJ)

the jobs in J must consume more
resource than C − ci for a period of at
least R(J, ci)/ci .

None of this excess resource is
consumed after job i finishes, because
i > J, so it must be consumed before
job i starts

51

Cumulative Scheduling: Exercise

C = 4

Verify that 3 > {1, 2} and update the domain of x3

52

Filtering Algorithm Design

1. Filtering algorithms based on a generic algorithm
Simple AC algorithms. Eg, element:

2. Filtering algorithms based on existing algorithms
Reuse existing algorithms for filtering (e.g., flows algorithms, dynamic programming).

3. Filtering algorithms based on ad-hoc algorithms
Pay particular attention to incrementality and amortized complexity

4. Filtering algorithms based on model reformulation
See the Constraint Decomposition approach

53

Outline

1. Global Constraints

2. Global Constraints for Scheduling

3. Soft Constraints

4. Optimization Constraints

54

Soft Constraints

Soft constraint
A soft constraint is a constraint that may be violated. We measure the violation of each constraint,
and the goal is to minimize the total amount of violation of all soft-constraints.

Definition

A violation measure for a soft-constraint C (x1, . . . , xn) is a function

µ : D(x1)× · · · × D(xn)→ Q.

This measure is represented by a cost variable z .

55

Violation measures

▶ The variable-based violation measure µvar counts the minimum number of variables that need
to change their value in order to satisfy the constraint.

▶ The decomposition-based violation measure µdec counts the number of constraints in the
binary decomposition that are violated.

56

The soft-alldifferent

Definition

Let x1, x2, ..., xn, z be variables with respective finite domains D(x1),D(x2), ...,D(xn),D(z). Let µ
be a violation measure for the alldifferent constraint. Then

soft-alldifferent(x1, ..., xn, z , µ) =

{(d1, ..., dn, d) | ∀i .di ∈ D(xi), d ∈ D(z), µ(d1, ..., dn) ≤ d}

is the soft alldifferent constraint with respect to µ.

57

The soft-alldifferent: an example

Example

Consider the following CSP

x1 ∈ {a, b}, x2 ∈ {a, b}, x3 ∈ {a, b}, x4 ∈ {a, b, c}, z ∈ Z+

soft-alldifferent(x1, x2, x3, x4, µ, z)
min z

We have for instance µvar (b, b, b, b) = 3 and µdec(b, b, b, b) = 6.

58

Filtering of soft-alldiff

Flow network and feasible flow Residual graph

59

Outline

1. Global Constraints

2. Global Constraints for Scheduling

3. Soft Constraints

4. Optimization Constraints

61

Optimization Constraints

Optimization Constraint bring the costs of variable-value pair into the declarative semantic of the
constraints.

The filtering does take into account the cost, and a tuple may be inconsistent because it does not
lead to a solution of “at least” a given cost.
Basic approach, solve a sequence of decision problems, allows one-way inference.
More powerful approach takes into account two-way inference.

62

gcc with costs

cardinality or cost_gcc (global cardinality constraint with costs)

Let x1, . . . , xn be assignment variables whose domains are contained in {v1, . . . , vn′} and let
{cv1 , . . . , cvn′} be count variables whose domains are sets of integers and w(x , d) ∈ Q are costs.
Then

cost_gcc([x1, ..., xn], [cv1 , ..., cvn′], z ,w) =

{(d1, ..., dn, o1, ..., on′) |
{(d1, ..., dn, o1, ..., on′) ∈ gcc(([x1, ..., xn], [cv1 , ..., cvn′]),

∀dj ∈ D(xj) d ∈ D(z)
∑
i

w(xi , di) ≤ d}.

63

Filtering for cost_gcc

(works on constant intervals)
Extend the (s, t)-network saw for gcc by weigths w(xi , vi) ∀vi

1. compute initial min-cost feasible (s, t)-flow, f . O(n(m + n log n)

2. For an arc uv with f (a) = 0 compute min cost directed path P from v to u in the residual
graph. P + a is a directed circuit.

3. since f is integer we can rerout one unit in the circuit and obtain:
cost(f ′) = cost(f) + cost(P).

4. if cost(f ′) > max(D(z)) remove v from D(xi)

2.-4. in O(∆(m + n log n)) where ∆ = min(n, |D(X)|).

64

Reduced-Cost Based Filtering [Focacci et al 1999]

Definition

Let X = {x1, ..., xn} be a set of variables with corresponding finite domains D(x1), ...,D(xn). We
assume that each pair (xi , j) with j ∈ D(xi) induces a cost cij .
We extend any global constraint C on X to an optimization constraint opt_C by introducing
a cost variable z (that we wish to minimize) and defining

opt_C(x1, ..., xn, z , c) = {(d1, ..., dn, d)|(d1, ..., dn) ∈ C (x1, ..., xn),

∀i .di ∈ D(xi), d ∈ D(z),
∑

i=1,...,n

cidi ≤ d}.

65

Linear Relaxation

We introduce binary variables yij for all i ∈ {1, ..., n} and j ∈ D(xi), such that

xi = j ⇔ yij = 1, ∀i = 1, . . . , n, ∀j ∈ D(xi),

xi ̸= j ⇔ yij = 0, ∀i = 1, . . . , n, ∀j ∈ D(xi)∑
j∈D(xi)

yij = 1, ∀i = 1, . . . , n.

+ constraint dependent linear inequalities

The reduced-costs are given w.r.t. the objective:∑
i=1,...,n

∑
j∈D(xi)

cijyij

66

Example
alldiff

min
∑

i,j ci,jyi,j∑
j∈D(xi)

yij = 1, ∀i = 1, . . . , n∑
i=1,...,n yij ≤ 1, ∀j ∈ D(xi)

yij ≥ 0

67

Filtering by Reduced-Cost (aka “variable fixing”)

Recall that reduced-costs estimate the increase of the objective function when we force a variable
into the solution.

Let c̄ij be the reduced cost for the variable-value pair xi = j , and let z∗ be the optimal value of the
current linear relaxation.

Reduced-costs estimate the increase of the objective function when we force a variable into the
solution. Hence, z∗ + c̄ij is the increase of adding yij = 1 in the solution. We apply the following

filtering rule:

if z∗ + c̄ij > maxD(z) then D(xi)← D(xi) \ {j}.

68

References

Hooker J.N. (2007). Integrated Methods for Optimization, vol. 100 of International Series in Operations
Research & Management Science. Springer.

van Hoeve W. and Katriel I. (2006). Global constraints. In Handbook of Constraint Programming, chap. 6.
Elsevier.

Algorithms from the paper discussed at the blackboard

69

	Global Constraints
	Global Constraints for Scheduling
	Soft Constraints
	
	
	

	Optimization Constraints
	

