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Resume and Outlook

▶ Modeling in CP
▶ Global constraints (declaration)
▶ Notions of local consistency
▶ Global constraints (operational: filtering algorithms)
▶ Search
▶ Set variables
▶ Symmetry breaking
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Global Variables

Global variables: complex variable types representing combinatorial structures in which problems
find their most natural formulation

Eg:
sets, multisets, strings, functions, graphs
bin packing, set partitioning, mapping problems

We will see:
▶ Set variables

▶ Graph variables
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Outline

1. Set Variables

2. Graph Variables

3. Float Variables
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Finite-Set Variables

▶ A finite-domain integer variable takes values from a finite set of integers.

▶ A finite-domain set variable takes values from the power set of a finite set of integers.
Eg.:
domain of x is the set of subsets of {1, 2, 3}:

{{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
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Finite-Set Variables

Recall the shift-assignment problem

We have a lower and an upper bound on the number of shifts that each worker is to staff
(symmetric cardinality constraint)

▶ one variable for each worker that takes as value the set of shifts covererd by the worker. ⇝
exponential number of values

▶ set variables with domain D(x) = [lb(x), ub(x)]
D(x) represented by two sets:
▶ lb(x) mandatory elements
▶ ub(x) \ lb(x) of possible elements

The value assigned to x should be a set s(x) such that lb(x) ⊆ s(x) ⊆ ub(x)

In practice good to keep dual views with channelling
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Finite-Set Variables
Example:

domain of x is the set of subsets of {1, 2, 3}:

{{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

can be represented in space-efficient way by:

[{}..{1, 2, 3}]

The representation is however an approximation!

Example:

domain of x is the set of subsets of {1, 2, 3}: {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}} cannot be
captured exactly by an interval. The closest interval would be still:

[{}..{1, 2, 3}]

⇝ we store additionally cardinality bounds: #[i ..j ]
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Set Variables

Definition

set variable is a variable with domain D(x) = [lb(x), ub(x)]
D(x) represented by two sets:
▶ lb(x) mandatory elements (intersection of all subsets)
▶ ub(x) \ lb(x) of possible elements (union of all subsets)

The value assigned to x must be a set s(x) such that lb(x) ⊆ s(x) ⊆ ub(x)

We are not interested in domain consistency but in bound consistency:

Enforcing bound consistency

A bound consistency for a constraint C defined on a set variable x requires that we:
▶ Remove a value v from ub(x) if there is no solution to C in which v ∈ s(x).
▶ Include a value v ∈ ub(x) in lb(x) if in all solutions to C , v ∈ s(x).
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In Gecode� �
#include <gecode/set.hh>
SetVar(Space home, int glbMin, int glbMax, int lubMin, int lubMax, int
cardMin=MIN, int cardMax=MAX); // greatest lower bound; least upper bound� �� �
SetVar A(home, 0, 1, 0, 5, 3, 3);
cout << A: {0,1}..{0..5}#(3) // prints a set variable� �� �
A.glbSize(); 2 // num. of elements in the greatest lower bound
A.glbMin(); 0 // minimum element of greatest lower bound
A.glbMax(); 1 // maximum of greatest lower bound
for (SetVarGlbValues i(x); i(); ++i) cout << i.val() << ’ ’; // values of glb
for (SetVarGlbRanges i(x); i(); ++i) cout << i.min() << ".." << i.max();

A.lubSize(): 6 // num. of elements in the least upper bound
A.lubMin(): 0 // minimum element of least upper bound
A.lubMax(): 5 // maximum element of least upper bound
for (SetVarLubValues i(x); i(); ++i) cout << i.val() << ’ ’;
for (SetVarLubRanges i(x); i(); ++i) cout << i.min() << ".." << i.max();

A.unknownSize(): 4 // num. of unknown elements (elements in lub but not in glb)
for (SetVarUnknownValues i(x); i(); ++i) cout << i.val() << ’ ’;
for (SetVarUnknownRanges i(x); i(); ++i) cout << i.min() << ".." <<i.max();

A.cardMin(): 3 // cardinality minimum
A.cardMax(): 3 // cardinality maximum� �9



In Gecode

� �
SetVar(home, IntSet glb, int lubMin, int lubMax, int cardMin=MIN, int cardMax=MAX)� �� �
SetVar A(home, IntSet(), 0, 5, 0, 4)� �� �
cout << A;
A.glbSize(): 0 // num. of elements in the greatest lower bound
A.glbMin(): -1073741823 // minimum element of greatest lower bound
A.glbMax(): 1073741823 // maximum of greatest lower bound

A.lubSize(): 6 // num. of elements in the least upper bound
A.lubMin(): 0 // minimum element of least upper bound
A.lubMax(): 5 // maximum element of least upper bound

A.unknownSize)(): 6 // num. of unknown elements (elements in lub but not in glb)

A.cardMin(): 0 // cardinality minimum
A.cardMax(): 4 // cardinality maximum� �
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In Gecode
� �
SetVar(home, int glbMin, int glbMax, IntSet lub, int cardMin=MIN, int cardMax=MAX)� �� �
SetVar A(home, 1, 3, IntSet({ {1,4}, {8,12} }), 2, 4)� �� �
cout << A;
A.glbSize(A): 3 // num. of elements in the greatest lower bound
A.glbMin(A): 1 // minimum element of greatest lower bound
A.glbMax(A): 3 // maximum of greatest lower bound

A.lubSize(A): 9 // nuA. of elements in the least upper bound
A.lubMin(A): 1 // minimum element of least upper bound
A.lubMax(A): 12 // maximum element of least upper bound

// A.unknownValues(A): [4, 8, 9, 10, 11, 12]
A.unknownSize)(A): 6 // num. of unknown elements (elements in lub but not in glb)
// A.unknownRanges(A): [(4, 4), (8, 12)]

A.cardMin(A): 3 // cardinality minimum
A.cardMax(A): 4 // cardinality maximum� �
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In Minizinc

Get/Set lower/upper bound:� �
set of int: dom(var set of int);
set of int: lb(var set of int);
set of int: ub(var set of int);
set of int: lb_array(array[$T] of var set of int);
set of int: ub_array(array[$T] of var set of int);� �
Standard set operations are provided:

▶ element membership (in),
▶ (non-strict) subset relationship (subset),
▶ (non-strict) superset relationship (superset),
▶ union (union), intersection (intersect),
▶ set difference (diff),
▶ symmetric set difference (symdiff)
▶ number of elements in the set (card).
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Constraints on FS variables
Domain constraints

� �
dom(home, x, SRT_SUB, 1, 10);
dom(home, x, SRT_SUP, 1, 3);
dom(home, y, SRT_DISJ, IntSet(4, 6));� �
� �
cardinality(home, x, 3, 5);� �
In MiniZinc:
the number of elements in the set card.
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Constraints on FS variables
Element

� �
element(home, x, y, z)� �
for an array of set variables or constants x ,
an integer variable y ,
and a set variable z .

It enforces z to be the element of array x at index y (where the index starts at 0).

Example� �
element([{{1,2,3},{2,3},{3,4}},{{2,3},{2}},{{1,4},{3,4},{3}}], 3, z)� �
=> z={{1,4},{3,4},{3}}
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Constraints on FS variables
Set Global Cardinality

it bounds the minimum and maximum number of occurrences of an element in an array of set
variables:

∀v ∈ U : lv ≤ |Sv | ≤ uv

where Sv is the set of set variables that contain the element v , i.e., Sv = {s ∈ S : v ∈ s}

(not present in gecode)
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Constraints on FS variables

An assignment is bound valid if:

▶ the value given to each integer variable is between the minimum and maximum integers in its
domain.

▶ the value given to each set or multiset variable is within these bounds
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Constraints on FS variables
Set Global Cardinality

Bessiere et al. [2004]
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Constraints on FS variables
Constraints connecting set and integer variables

the integer variable y is equal to the cardinality of the set variable x .� �
cardinality(home, x, y);� �
Minimal and maximal elements of a set: int var y is minimum of set var x� �
min(x, y);� �
Weighted sets: assigns a weight to each possible element of a set variable x , and then constrains
an integer variable y to be the sum of the weights of the elements of x� �
int e[6] = {1, 3, 4, 5, 7, 9};
int w[6] = {-1, 4, 1, 1, 3, 3}
weights(home, e, w, x, y)� �
enforces that x is a subset of {1, 3, 4, 5, 7, 9} (the set of elements), and that y is the sum of the
weights of the elements in x , where the weight of the element 1 would be −1, the weight of 3
would be 4 and so on.
Eg. Assigning x to the set {3, 7, 9} would therefore result in y be set to 4 + 3 + 3 = 10
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Constraints on FS variables
Channeling constraints

an array of Boolean variables X
set variable S� �
channel(home, X, S)� �� �
link_set_to_booleans(array [int] of var bool: X, var set of int: S)� �

Xi = 1 ⇐⇒ i ∈ S 0 ≤ i < |X |

Example
S = {1,2}
X = [1,1,0]
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Constraints on FS variables
Channeling constraints

X an array of integer variables,
SA an array of set variables� �
channel(home, X, SA)� �� �
int_set_channel(array [int] of var int: X, array [int] of var set of int: SA)� �

Xi = j ⇐⇒ i ∈ SAj 0 ≤ i , j < |X |

SAi = s ⇐⇒ ∀j ∈ s : Xj = i

Example
SA = [{1,2},{3}]
X = [1,1,2]
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Constraints on FS variables
Channeling constraints

An array of integer variables x⃗
a set variable S :� �
rel(home, SOT_UNION, x, S)� �
constrains S to be the set {x0, . . . , x|x|−1}
In MiniZinc:� �
set of int: dom_array(array[$T] of var int)
var set of $$E: array_union(array[$T] of var set of $$E)� �� �
channelSorted(home, x, S);� �
constrains S to be the set {x0, . . . , x|x|−1}, and the integer variables in x⃗ to be sorted in increasing
order (xi < xi+1 for 0 ≤ i < |x |)

Example
rel(home, SOT_UNION, [3,6,2,1], {1,2,3,6})
channelSorted(home, [1,2,3,6], {1,2,3,6})
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Constraints on FS variables
Channeling constraints

SA1 and SA2 two arrays of set variables� �
channel(home, SA1, SA2)� �� �
inverse_set(array [int] of var set of int: f, array [int] of var set of int: invf)� �

SA1[i ] = s ⇐⇒ ∀j ∈ s : i ∈ SA2[j ] SA1[i ] = {j | SA2[j ] contains i}
SA2[j ] = {i | SA1[i ] contains j}

Example
SA1 = [{1,2},{3},{1,2}]
SA2 = [{1,3},{1,3},{2}]
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Constraints on FS variables
Convexity

set variable S :� �
convex(home, S)� �
The convex hull of a set S is the smallest convex set containing S� �
convex(home, S1, S2)� �
enforces that the set variable S2 is the convex hull of the set variable S1.

Example
S={{1,2,5,6,7},{2,3,4},{3,5}} convex(S)={2,3,4}
convex({1,2,5,6,7},{1,2,3,4,5,6,7})
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Constraints on FS variables
Sequence constraints

enforce an order among an array of set variables x� �
sequence(home,x)� �
sets x being pairwise disjoint, and furthermore max(xi ) < min(xi+1) for all 0 ≤ i < |x | − 1� �
sequence(home, x, y)� �
additionally constrains the set variable y to be the union of the x .

In MiniZinc:� �
predicate decreasing(array [$X] of var set of int: x)
predicate increasing(array [$X] of var set of int: x)� �
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Constraints on FS variables
Value precedence constraints

enforce that a value precedes another value in an array of set variables.
x is an array of set variables and both s and t are integers,� �
precede(home, x, s, t)� �
if there exists j (0 ≤ j < |x |) such that s ̸∈ xj and t ∈ xj , then there must exist i with i < j such
that s ∈ xi and t ̸∈ xi
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Social Golfers Problem

Find a schedule for a golf tournament:
▶ g · s golfers,
▶ who want to play a tournament in g groups of s golfers over w weeks,
▶ such that no two golfers play against each other more than once during the tournament.

A solution for the instance w = 4, g = 3, s = 3
(players are numbered from 0 to 8)
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Model with Integer Variables — Gecode� �
players = 9;
groupSize = 3;
days = 4;

groups = players/groupSize;

#=== Variables ==============
assign = m.intvars(players * days, 0, groups-1)
schedule = Matrix(players, days, assign)

#=== Constraints ============
# C1: Each group has exactly groupSize players
for d in range(days):

m.count(schedule.col(d), [groupSize, groupSize, groupSize]);

# C2: Each pair of players only meets once
p_pairs = [(a,b) for a in range(players) for b in range(players) if p1<p2]
d_pairs = [(a,b) for a in range(days) for b in range(days) if d1<d2]
for (p1,p2) in p_pairs:

for (d1,d2) in d_pairs:
b1 = m.boolvar()
b2 = m.boolvar()
m.rel(assign(p1,d1), IRT_EQ, assign(p2,d1), b1)
m.rel(assign(p1,d2), IRT_EQ, assign(p2,d2), b2)
m.linear([b1,b2], IRT_LQ, 1)

m.branch(assign, INT_VAL_MIN_MIN, INT_VAL_SPLIT_MIN)� �35



Model with Finite Set Variables

Array of set variables:� �
int w = 4;
int g = 3;
int s = 3;

int golfers = g * s;

SetVarArray groups(home, w*g, IntSet(), 0, golfers-1, s, s)� �
size g · w , where each group can contain the players [0..g · s − 1] and has cardinality s� �
array[WEEK,GROUP] of var set of GOLFER: Sched; % In Minizinc� �
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Model with Set Vars — Gecode� �
p = 9 # number of players
g = 3 # number of groups
w = 4 # number of weeks

s = p/g # size of groups

#=== Variables ==============
groups = setvars(g*w, intset(), 0, p-1, s, s)
schedule = Matrix(g, w, groups)
allPlayers = setvar(0, p-1, 0, p-1)

#=== Constraints ============
# In each week, groups must be dis jo int and contain a l l players
for i in range(g):

z1 = setvars(g, intset(), 0, p-1, 0, p)
rel(SOT_DUNION, schedule[i].row(i), z1[i])
rel(z1[i], SRT_EQ, allPlayers)

# at most one player overlaps between groups
for i,j in itertools.combinations(range(g*w), 2):

z2 = setvar(intset(), 0, p-1, 0, p))
rel(groups[i], SOT_INTER, groups[j], SRT_EQ, z2)
cardinality(z2, 0, 1)

dom(groups[0],SRT_EQ,intset(0,2)) # {0,1,2} in groups [0] to break symmetry
branch(groups, SET_VAR_MIN_MIN, SET_VAL_MIN_INC);� �
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Model with Finite Set Vars — Minizinc� �
i n c l u d e " p a r t i t i o n_ s e t . mzn " ;
i n t : weeks ; s e t o f i n t : WEEK = 1 . . weeks ;
i n t : g roups ; s e t o f i n t : GROUP = 1 . . g roups ;
i n t : s i z e ; s e t o f i n t : SIZE = 1 . . s i z e ;
i n t : n g o l f e r s = groups ∗ s i z e ;
s e t o f i n t : GOLFER = 1 . . n g o l f e r s ;

a r r a y [WEEK,GROUP] o f va r s e t o f GOLFER: Sched ;

% c o n s t r a i n t s
c o n s t r a i n t

f o r a l l ( i i n WEEK, j i n GROUP) (
ca rd ( Sched [ i , j ] ) = s i z e /\ f o r a l l ( k i n j +1. . g roups ) ( Sched [ i , j ] i n t e r s e c t Sched [ i , k ] = {} )

) /\
f o r a l l ( i i n WEEK) ( p a r t i t i o n_ s e t ( [ Sched [ i , j ] | j i n GROUP] , GOLFER) ) /\
f o r a l l ( i i n 1 . . weeks −1, j i n i +1. . weeks ) (

f o r a l l ( x , y i n GROUP) ( ca rd ( Sched [ i , x ] i n t e r s e c t Sched [ j , y ] ) <= 1 )
) ;

% symmetry
c o n s t r a i n t

% Fix the f i r s t week %
f o r a l l ( i i n GROUP, j i n SIZE ) ( ( ( i −1)∗ s i z e + j ) i n Sched [ 1 , i ] ) /\

% Fix f i r s t group o f second week %
f o r a l l ( i i n SIZE ) ( ( ( i −1)∗ s i z e + 1) i n Sched [ 2 , 1 ] ) /\

% Fix f i r s t ’ s i z e ’ p l a y e r s
f o r a l l (w i n 2 . . weeks , p i n SIZE ) ( p i n Sched [w, p ] ) ;

s o l v e s a t i s f y ;

o u t p u t [ show ( Sched [ i , j ] ) ++ " " ++ i f j == groups t h e n "\n" e l s e "" e n d i f | i i n WEEK, j i n GROUP ] ;� �
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Set Domain representation

▶ A finite integer set V can be represented by its characteristic function χV :

χV : Z → {0, 1} where χv (i) = 1 iff i ∈ V

hence we can use a set of Boolean variables vi to represent the set V , which corresponds to
the propositions vi ⇐⇒ i ∈ V

Set bounds propagation is equivalent to performing domain propagation in a naive way on this
Boolean representation

▶ Sets of sets: disjunction of characteristic functions

χV(i) ⇐⇒
∨
V∈V

χV (i)
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▶ Consider the domain {{}, {1, 2}, {2, 3}}

▶ Introduce propositional variables x1, x2, x3

▶ Represent single variable domain as

(¬x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1 ∧ x2 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ x3))

▶ Represent all variable domains as conjunction

▶ Efficient datastructure: ROBDDs
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ROBDD
A Reduced Ordered Binary Decision Diagram (ROBDD) is a compact data structure (Bryant
[1986]):
a canonical function representation up to reordering, which permits an efficient implementation of
many Boolean function operations.

https://en.wikipedia.org/wiki/Binary_decision_diagram
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Implementation in Gecode

▶ Set variables in Gecode do not use Reduced Ordered Binary Decision Diagrams
(ROBDDs).

▶ A prototype alternative implementation using ROBDDs proved to be a lot slower in
many cases (and quite painful to maintain because of additional dependencies).

▶ The current implementation uses range lists (i.e. linked lists of contiguous, sorted,
non-overlapping ranges) to store a lower and an upper bound, together with a lower
and upper bound on the cardinality.

Guido Tack
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Graph Variables

Definition
A graph variable is simply two set variables V and E , with an inherent constraint E ⊆ V × V .

Hence, the domain D(G ) = [lb(G ), ub(G )] of a graph variable G consists of:
▶ mandatory vertices and edges lb(G ) (the lower bound graph) and
▶ possible vertices and edges ub(G ) \ lb(G ) (the upper bound graph).

The value assigned to the variable G must be a subgraph of ub(G ) and a super graph of the lb(G ).
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Bound consistency on Graph Variables

Graph variables are convinient for possiblity of efficient filtering algorithms

Example:

Subgraph(G,S)

specifies that S is a subgraph of G . Computing bound consistency for the subgraph constraint
means the following:

1. If lb(S) is not a subgraph of ub(G ), the constraint has no solution (consistency check).
2. For each e ∈ ub(G ) ∩ lb(S), include e in lb(G ).
3. For each e ∈ ub(S) \ ub(G ), remove e from ub(S).
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Constraints on Graph Variables

▶ Tree constraint: enforces the partitioning of a digraph into a set of vertex-disjoint
anti-arborescences. (see, [Beldiceanu2005])

▶ Weghted Spanning Tree constraint: given a weighted undirected graph G = (V ,E ) and a
weight K , the constraint enforces that T is a spanning tree of cost at most K (see,
[Regin2008,2010] and its application to the TSP [Rousseau2010]).

▶ Shorter Path constraint: given a weighted directed graph G = (N,A) and a weight K , the
constraint specifies that P is a subset of G , corresponding to a path of cost at most K . (see,
[Sellmann2003, Gellermann2005])

▶ (Weighted) Clique Constraint, (see, [Regin2003]).
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Float Variables

▶ Floating point values represented as a closed interval of two floating point numbers (short,
float number):
closed interval [a..b] to represent all real numbers n such that a ≤ n ≤ b.

▶ correct computations: no possible real number is ever excluded due to rounding ⇝ Interval
arithmetic

▶ The float number type FloatNum defined as double

▶ FloatVar x; x.min(); x.max(); x.tight() (a = b assigned)

▶ predefined values pi_half(), pi(), pi_twice()

▶ x<y ⇝ x.max()<y.min()

50



Non default functions need recompilation
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Variable Creation

� �
FloatVar x(home, -1.0, 1.0); // creation
FloatVar y(x); // call to copy constructor, refer to variable x
FloatVar z; // default constructor, no variable implemented
z=y; // copy, z refer to x
cout<<x;� �
The variables x, y, and z all refer to the same float variable implementation.

52



Constraints

� �
dom(home, x, -2.0, 12.0);
dom(home, x, d);

rel(home, x, FRT_LE, y);
rel(home, x, FRT_LQ, 4.0);

rel(home, x, FRT_LQ, y);
rel(home, x, FRT_GR, 7.0);

min(home, x, y);

linear(home, a, x, FRT_EQ, c);
linear(home, x, FRT_GR, c);

channel(home, x, y);� �
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Interval Arithmetics

Whereas classical arithmetic defines operations on individual numbers,
interval arithmetic defines a set of operations on intervals:
For intervals on integers:

T · S = {x | there is some y in T , and some z in S , such that x = y · z}.

For intervals on real numbers, the arithmetic is an extension of real arithmetic.
Let two intervals [a, b] and [c , d ] be subsets of the real line (−∞,+∞):

Definition

If ∗ is one of the symbols +,−, ·, / for the arithmetic operations on intervals, then

[a, b] ∗ [c , d ] = {x ∗ y | a ≤ x ≤ b, c ≤ y ≤ d}

except that [a, b]/[c , d ] remains undefined if 0 ∈ [c , d ].
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From the definition:
▶ [a, b] + [c , d ] = [a+ c , b + d ],
▶ [a, b]− [c , d ] = [a− d , b − c],
▶ [a, b]× [c , d ] = [min(a× c , a× d , b × c , b × d),max(a× c , a× d , b × c , b × d)],
▶ [a, b]/[c , d ] = [min(a/c , a/d , b/c , b/d),max(a/c , a/d , b/c , b/d)] when 0 is not in [c , d ].

The addition and multiplication operations are commutative, associative and sub-distributive: the
set X (Y + Z ) is a subset of XY + XZ .

See [Apt, 2003, sc 6.6]
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