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Heuristic VLSN Algorithms

Other heuristics that can be seen as belonging to the class of VLSN are those metaheuristics based
on alternately destroying and repairing the solution:

• Iterated greedy

• Large Neighborhood Search (LNS) proposed by [Shaw, 1998]

• Adaptive Large Neighborhood Search (ALNS) [Røpke and Pisinger, 2006]
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Large Neighborhood Search
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Large Neighborhood Search

The LNS metaheuristic does not search the entire neighborhood of a solution, but merely samples
this neighborhood.

5



Acceptance criterion:
• Always
• Only if better
• record-to-record travel (accept if

f (s ′) ≤ (1 + r)f (sb))
• threshold accepting (Metropolis criterion)
• simulated annealing criterion

Degree of Destruction
• gradually increase
• randomly chosen from a specific range

dependent on the instance size
To guarantee connectivity, it must be possible to
destroy every part of the solution.

Repair method:
• problem-specific heuristic
• exact method
• general purpose mixed integer programming

(MIP) (aka, fix and optimize)
• constraint programming solver (aka, fix and

optimize)
It should allow diversification
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Adaptive Large Neighborhood Search (ALNS)

Key Idea: allow multiple destroy and repair methods controlling with an adaptive weighting system
how often a particular method is attempted during the search. [Ropke, Pisinger, 2006]
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Selection mechanism: roulette wheel principle:

p(j) =
ρ−j∑

k∈Ω−
ρ−k

Update mechanism

Ψ = max


ω1 if the new solution is a new global best
ω2 if the new solution is better than the current one
ω3 if the new solution is accepted
ω4 if the new solution is rejected

with normally ω1 ≥ ω2 ≥ ω3 ≥ ω4 ≥ 0. Only accepted a and b are updated:

ρ−a = λρ−a + (1 − λ)Ψ, ρ+b = λρ+b + (1 − λ)Ψ

λ ∈ [0, 1] is a decay parameter
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Design Choices

Destroy methods:
• Diversification: random destroy method.
• Intensification: remove q “critical” variables, i.e. variables having a large cost or variables that

spoil the current structure of the solution (e.g. edges crossing each other in an Euclidean
TSP). This is known as worst destroy or critical destroy.

• related destroy select a set of customers that have a high mutual relatedness measure. Eg on
the CVRP, relatedness measure between each pair of customers is distance between the
customers (and it could include customer demand)

• history based destroy q variables are chosen according to some historical information,

Repair methods:
• Greedy heuristics, problem specific
• include local search
• exact algorithms
• Mixed integer programming (aka, matheuristic)
• constraint programming
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Design Choices

Large multiple-neighborhood search (LMNS) heuristics: It may be sufficient to have a number of
destroy and repair heuristics that are selected randomly with equal probability, that is, without the
adaptive layer.

Same robustness as ALNS heuristics, while fewer parameters to calibrate.
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Other Relations

• Variable Neighborhood Search

• Portfolio Algorithms

• Hyperheuristics, another thread in UK

• Reinforcement learning

11



Outline

1. Adaptive Large Neighborhood Search (ALNS)

2. Construct, Merge, Solve & Adapt (CMSA)

12



Construct, Merge, Solve & Adapt (CMSA)

• I problem instance to a generic problem P,

• C set of all possible components of which solutions to the problem instance are composed (eg,
each combination of a variable with one of its values is a solution component)

• S valid solution to I is represented as a subset of the solution components C , that is, S ⊆ C .

• C ′ ⊆ C contains the solution components that belong to a restricted problem instance, that is,
a sub-instance (aka a domain tightening) of I

Example, the input graph in case of the TSP. The set of all edges can be regarded as the set of all
possible solution components C. The edges belonging to a tour S – that is, a valid solution – form
the set of solution components that are contained in S . The union of the edges beloning to many
different tours constitues the set C ′.
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Construct, Merge, Solve & Adapt (CMSA)

[Construct, Merge, Solve & Adapt A new general
algorithm for combinatorial optimization C Blum, P
Pinacho, M López-Ibáñez, JA Lozano, COR, 2016]
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Example: minimum common string partition (MCSP)

Given:
• Two input strings s1 and s2 of length n over a finite alphabet Σ.
• Two strings are related: each letter appears the same number of times in each of them. (hence

|s1| = |s2| = n.)
• A valid solution is a partitioning s1 into a set P1 of non-overlapping substrings, and s2 into a

set P2 of non-overlapping substrings, such that P1 = P2.
Goal:

• Find a valid solution such that |P1| = |P2| is minimal.

Example

s1 = AGACTG and s2 = ACTAGG .
The two strings are related.
A trivial valid solution is P1 = P2 = {A,A,C ,T ,G ,G}. The objective function value of this
solution is 6.
The optimal solution is P1 = P2 = {ACT ,AG ,G} with objective function value 3.
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• C = {c1, . . . cm} be the arbitrarily ordered set of all possible common blocks of s1 and s2, i.e.,
C is the set of all solution components.

• a common block ci of input strings s1 and s2 is denoted as a triple ⟨ti ; k1
i ; k

2
i ⟩, ti is a string

starting at position 1 ≤ k1
i ≤ n in string s1 and starting at position 1 ≤ k2

i ≤ n in string s2.

• a subset S of C is called a valid subset iff the following conditions hold
1

∑
ci∈S |ti | ≤ n, that is, the sum of the length of the strings corresponding to the common blocks

in S is smaller or equal to the length of the input strings.
2 For any two common blocks ci , cj ∈ S it holds that their corresponding strings neither overlap in

s1 nor in s2.

• Given a valid subset S ⊂ C , set Ext(S) ⊂ C \ S denotes the set of common blocks that may
be used in order to extend S such that the result is again a valid subset.
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ProbabilisticSolutionGeneration(C)
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ApplyExactSolver(C’): Solving reduced sub-instances

MIPped.
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Example: minimum covering arborescence (MCA)

Given: directed (acyclic) graph
D = (V ,A) with integer weights on the
arcs w(a) ∈ Z.

Task: Find subgraphs of minimal total
weight that are arborescences rooted in
a pre-defined root node v1

arborescence: directed, rooted (not
necessarily spanning) tree in which all
arcs point away from the root node
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ProbabilisticSolutionGeneration(C)

• complete set of solution components corresponds to the set A of arcs of the input graph, that
is, C = A

• valid subset S ⊂ A iff T = (V (S),S) is an arborescence of the input graph G rooted in v1

• Ext(S) ⊂ A \ S arcs that can be added
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ApplyExactSolver(C’): Solving reduced sub-instances

MIPped.
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