
DM841

Discrete Optimization — Heuristics

Metaheuristics based on Construction Heuristics (I)

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Course Overview – Heuristics Part

✔ Local Search Algorithms: Components

✔ Local Search Based Metaheuristics
• Construction Heuristics Based Metaheuristics
• Working Environment and Solver Systems
• Population Based Metaheuristics
• Heuristics for the TSP
• Local Search: Neighborhoods and Search Landscape
• Efficient Local Search: Incremental Updates and Neighborhood Pruning (Focused LS)
• Very Large Scale Neighborhoods
• Methods for the Analysis of Experimental Results
• Methods for Algorithm Configuration and Tuning

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree, p-median, set covering
2

Heuristics
Get inspired by approach to problem solving in human mind
[A. Newell and H.A. Simon. “Computer science as empirical inquiry: symbols and search.” Communications
of the ACM, ACM, 1976, 19(3)]

• effective rules without theoretical support
• trial and error

Applications:
• Optimization
• But also in Psychology, Economics, Management [Tversky, A.; Kahneman, D. (1974). "Judgment

under uncertainty: Heuristics and biases". Science 185]
Basis on empirical evidence rather than mathematical logic. Getting things done in the given time.

3

Constructive search

What is a partial solution (as opposed to a complete solution)?

• Solutions as subsets of a larger ground set of solution components

• Partial solutions as a representation of all candidate solutions that contain them

• Not all subsets of components are valid/feasible partial solutions

• Construction rule

• Assessment of partial solutions inferred from the sets of solutions that they represent

• Lower bound (minimization) or upper bound (maximization)

4

Outline

1. Bounded backtrack

2. Limited Discrepancy Search

3. Random Restart

4. Rollout/Pilot Method

5. Beam Search

6. GRASP

7. Iterated Greedy

6

Complete Search Methods

Tree (or graph) search in
Uninformed settings (satisfaction probs)

• Breadth-first search
• Uniform-cost search
• Depth-first search
• Depth-limited search
• Iterative deepening search
• Bidirectional Search

Informed settings (optimization probs)
• best-first search, aka, greedy search
• A∗ search
• Iterative Deepening A∗

• Memory bounded A∗

• Recursive best first

In construction heuristics for this course, we can assume tree search of fixed known depth.

7

Best-first search

8

A∗ search

A∗ search
• The priority assigned to a node x is determined by the function

f(x) = g(x) + h(x)

g(x): cost of the path so far
h(x): heuristic estimate of the minimal cost to reach the goal from x.

• It is optimal if h(x) is an
• admissible heuristic: never overestimates the cost to reach the goal
• consistent: h(n) ≤ c(n, a, n′) + h(n′)

(consistent =⇒ admissible, only necessary in graph search)

9

A∗ search

10

A∗ search

Possible choices for admissible heuristic functions
• optimal solution to an easily solvable relaxed problem
• optimal solution to an easily solvable subproblem
• learning from experience by gathering statistics on state features
• preferred: heuristic functions with higher values (provided they do not overestimate)
• if several heuristics available h1, h2, . . . , hm and not clear which is the best then:

h(x) = max{h1(x), . . . , hm(x)}

11

A∗ search
Drawbacks

• Time complexity: In the worst case, the number of nodes expanded is exponential,
(but it is polynomial when the heuristic function h meets the following condition:

|h(x)− h∗(x)| ≤ O(log h∗(x))

h∗ is the optimal heuristic, the exact cost of getting from x to the goal.)

• Memory usage: In the worst case, it must remember an exponential number of nodes.
Several variants: including iterative deepening A∗ (IDA∗), memory-bounded A∗ (MA∗) and
simplified memory bounded A∗ (SMA∗) and recursive best-first search (RBFS)

12

Incomplete Search

On backtracking framework
(beyond depth-first search)

• Bounded backtrack
• Credit-based search
• Limited Discrepancy Search
• Barrier Search
• Randomization in Tree Search
• Random Restart

Outside the exact framework
(beyond greedy search)

• Random Restart
• Rollout/Pilot Method
• Beam Search
• Iterated Greedy
• GRASP
• (Adaptive Iterated Construction Search)
• (Multilevel Refinement)

13

Outline

1. Bounded backtrack

2. Limited Discrepancy Search

3. Random Restart

4. Rollout/Pilot Method

5. Beam Search

6. GRASP

7. Iterated Greedy

14

Bounded backtrack

http://4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm

15

http://4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm

Credit-based search

• Key idea: important decisions are at the top
of the tree

• Credit = backtracking steps
• Credit distribution: one half at the best child

the other divided among the other children.
• When credits run out follow deterministic

best-search
• In addition: allow limited backtracking steps

(eg, 5) at the bottom
• Control parameters: initial credit,

distribution of credit among the children,
amount of local backtracking at bottom.

16

Outline

1. Bounded backtrack

2. Limited Discrepancy Search

3. Random Restart

4. Rollout/Pilot Method

5. Beam Search

6. GRASP

7. Iterated Greedy

17

Limited Discrepancy Search

Limited Discrepancy Search (LDS)

• Key observation that often the heuristic used
in the search is nearly always correct with
just a few exceptions.

• Explore the tree in increasing number of
discrepancies, modifications from the
heuristic choice.

• Eg: count one discrepancy if second best is
chosen
count two discrepancies either if third best is
chosen or twice the second best is chosen

• Control parameter: the number of
discrepancies

18

Outline

1. Bounded backtrack

2. Limited Discrepancy Search

3. Random Restart

4. Rollout/Pilot Method

5. Beam Search

6. GRASP

7. Iterated Greedy

20

Randomization in Tree Search

The idea comes from complete search: the important decisions are made up in the search tree
(backdoors - set of variables such that once they are instantiated the remaining problem simplifies
to a tractable form)
⇝ random selections + restart strategy

Random selections
• randomization in variable ordering:

• breaking ties at random
• use heuristic to rank and randomly pick from small factor from the best
• random pick among heuristics
• random pick variable with probability depending on heuristic value

• randomization in value ordering:
• just select random from the domain

Restart strategy in backtracking

• Example: Su = (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 4, 8, 1, . . .)

21

Outline

1. Bounded backtrack

2. Limited Discrepancy Search

3. Random Restart

4. Rollout/Pilot Method

5. Beam Search

6. GRASP

7. Iterated Greedy

22

Rollout/Pilot Method

Derived from A∗

• Each candidate solution is a collection of m components S = (s1, s2, . . . , sm).
• Master process adds components sequentially to a partial solution Sk = (s1, s2, . . . sk)

• At the k-th iteration the master process evaluates feasible components to add based on an
heuristic look-ahead strategy.

• The evaluation function H(Sk+1) is determined by sub-heuristics that complete the solution
starting from Sk

• Sub-heuristics are combined in H(Sk+1) by
• weighted sum
• minimal value

23

Speed-ups:
• halt whenever cost of current partial solution exceeds current upper bound
• evaluate only a fraction of possible components

24

Outline

1. Bounded backtrack

2. Limited Discrepancy Search

3. Random Restart

4. Rollout/Pilot Method

5. Beam Search

6. GRASP

7. Iterated Greedy

25

Beam Search

Based on the tree search framework:

• maintain a set B of bw (beam width) partial candidate solutions

• at each iteration extend each solution from B in fw (filter width) possible ways

• rank each bw × fw candidate solutions and take the best bw partial solutions

• complete candidate solutions obtained by B are maintained in Bf

• Stop when no partial solution in B is to be extended

26

Outline

1. Bounded backtrack

2. Limited Discrepancy Search

3. Random Restart

4. Rollout/Pilot Method

5. Beam Search

6. GRASP

7. Iterated Greedy

27

GRASP
Greedy Randomized Adaptive Search Procedure

Key Idea: Combine randomized constructive search with subsequent local search.

Motivation:

• Candidate solutions obtained from construction heuristics can often be substantially improved
by local search.

• Local search methods often require substantially fewer steps to reach high-quality solutions
when initialized using greedy constructive search rather than random picking.

• By iterating cycles of constructive + local search, further performance improvements can be
achieved.

28

Greedy Randomized “Adaptive” Search Procedure (GRASP):
while termination criterion is not satisfied do

generate candidate solution s using
subsidiary greedy randomized constructive search

perform subsidiary local search on s

• Randomization in constructive search ensures that a large number of good starting points for
subsidiary local search is obtained.

• Constructive search in GRASP is ‘adaptive’ (or dynamic):
Heuristic value of solution component to be added to
a given partial candidate solution may depend on
solution components present in it.

• Variants of GRASP without local search phase
(aka semi-greedy heuristics) typically do not reach
the performance of GRASP with local search.

29

Restricted candidate lists (RCLs)

• Each step of constructive search adds a solution component selected uniformly at random
from a restricted candidate list (RCL).

• RCLs are constructed in each step using a heuristic function h.

• RCLs based on cardinality restriction comprises the k best-ranked solution components. (k is a
parameter of the algorithm.)

• RCLs based on value restriction comprise all solution components l for which
h(l) ≤ hmin + α · (hmax − hmin),
where hmin = minimal value of h and hmax = maximal value
of h for any l. (α is a parameter of the algorithm.)

• Possible extension: reactive GRASP (e.g., dynamic adaptation of α
during search)

30

Example: Squeaky Wheel

Key idea: solutions can reveal problem structure which maybe worth to exploit.

Use a greedy heuristic repeatedly by prioritizing the elements that create troubles.

Squeaky Wheel
• Constructor: greedy algorithm on a sequence of problem elements.
• Analyzer: assign a penalty to problem elements that contribute to flaws in the current solution.
• Prioritizer: uses the penalties to modify the previous sequence of problem elements. Elements

with high penalty are moved toward the front.

Possible to include a local search phase between one iteration and the other

31

Outline

1. Bounded backtrack

2. Limited Discrepancy Search

3. Random Restart

4. Rollout/Pilot Method

5. Beam Search

6. GRASP

7. Iterated Greedy

32

Iterated Greedy

Key idea: use greedy construction
• alternation of construction and deconstruction phases
• an acceptance criterion decides whether the search continues from the new or from the old

solution.

Iterated Greedy (IG):
determine initial candidate solution s
while termination criterion is not satisfied do

r := s
(randomly or heuristically) destruct part of s
greedily reconstruct the missing part of s
based on acceptance criterion,

keep s or revert to s := r

33

	Bounded backtrack
	Limited Discrepancy Search
	Random Restart
	Rollout/Pilot Method
	Beam Search
	GRASP
	Iterated Greedy

