DM841

Discrete Optimization — Heuristics

Metaheuristics based on Construction Heuristics (I)

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Course Overview — Heuristics Part

v Local Search Algorithms: Components

v Local Search Based Metaheuristics

® Construction Heuristics Based Metaheuristics

® Working Environment and Solver Systems

® Population Based Metaheuristics

® Heuristics for the TSP

® | ocal Search: Neighborhoods and Search Landscape
® Efficient Local Search: Incremental Updates and Neighborhood Pruning (Focused LS)
® \ery Large Scale Neighborhoods

® Methods for the Analysis of Experimental Results

® Methods for Algorithm Configuration and Tuning

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree, p-median, set covering



Heuristics

Get inspired by approach to problem solving in human mind
[A. Newell and H.A. Simon. "Computer science as empirical inquiry: symbols and search.” Communications
of the ACM, ACM, 1976, 19(3)]

o cffective rules without theoretical support

® trial and error

Metaheuristic

Construction Local Search
Heuristics

Applications:
® QOptimization
® But also in Psychology, Economics, Management [Tversky, A.; Kahneman, D. (1974). "Judgment
under uncertainty: Heuristics and biases". Science 185]

Basis on empirical evidence rather than mathematical logic. Getting things done in the given time.



Constructive search

What is a partial solution (as opposed to a complete solution)?

® Solutions as subsets of a larger ground set of solution components

Partial solutions as a representation of all candidate solutions that contain them

Not all subsets of components are valid/feasible partial solutions

Construction rule

® Assessment of partial solutions inferred from the sets of solutions that they represent

Lower bound (minimization) or upper bound (maximization)



Outline

1. Bounded backtrack

2. Limited Discrepancy Search
3. Random Restart

4. Rollout/Pilot Method

5. Beam Search

6. GRASP

7. lterated Greedy



Complete Search Methods

Tree (or graph) search in

Uninformed settings (satisfaction probs)

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
Iterative deepening search

Bidirectional Search

Informed settings (optimization probs)
® best-first search, aka, greedy search
® A" search
® |terative Deepening A*

Memory bounded A*

Recursive best first

In construction heuristics for this course, we can assume tree search of fixed known depth.



Best-first search

118
E Vastui

[ Timisoara

B Hirsova

[ Mehadia Urziceni

86
Dobreta [

Craiova Eforie

T

() The initial state

(b) After expanding Arad

253 329 e

(c) After expanding Sibiu

366 176 380 1903

Figure 3.2 A simplified road map of part of Romania.

Figare 4.2 Stages in a greedy best-first search for Bucharest using the straight-line dis-
tance heuristic hgrp. Nodes are labeled with their h-values.




A* search

A* search

® The priority assigned to a node x is determined by the function

f(@) = g(x) + h(z)

g(z): cost of the path so far
h(z): heuristic estimate of the minimal cost to reach the goal from x.
® |t is optimal if A(z) is an
® admissible heuristic: never overestimates the cost to reach the goal
® consistent: h(n) < c(n,a,n’) + h(n')
(consistent — admissible, only necessary in graph search)




A* search

118

] Hirsova

Craiova Eforie

Figure 3.2 A simplified road map of part of Romania.

(a) The initial state

(b) After expanding Arad

ey o= pr=nct

(©) After expanding Sibiu

e >
perrd) pre=a1
AR08 4124176 611150 AL

(d) After expanding Rimnicu Vilcea

ey

P> o
SRR 415295176 6712914380

o> TS
$Toe366-180 ATTIITIIO0 300128

(©) After expanding Fagaras

(6) After expanding Pitesti

>

pr=ne
D COnieD> @A

Pl Erene

P

Limine G @i

Figure 43  Stages in an A" search for Bucharest. Nodes are labeled with f = g + h. The
h values are the straight-line distances 1o Bucharest taken from Figure 4.1




A* search

Possible choices for admissible heuristic functions

optimal solution to an easily solvable relaxed problem

optimal solution to an easily solvable subproblem

learning from experience by gathering statistics on state features

preferred: heuristic functions with higher values (provided they do not overestimate)

if several heuristics available 111, ho, ..., h,, and not clear which is the best then:

h(z) = max{hi(x),..., hyn(2)}

11



A* search

Drawbacks

® Time complexity: In the worst case, the number of nodes expanded is exponential,
(but it is polynomial when the heuristic function h meets the following condition:

[h(z) — h*(z)] < O(log h*(x))

h* is the optimal heuristic, the exact cost of getting from z to the goal.)

® Memory usage: In the worst case, it must remember an exponential number of nodes.
Several variants: including iterative deepening A* (IDA*), memory-bounded A* (MA*) and
simplified memory bounded A* (SMA*) and recursive best-first search (RBFS)

12



Incomplete Search

On backtracking framework
(beyond depth-first search)

Bounded backtrack
Credit-based search

Limited Discrepancy Search
Barrier Search

Randomization in Tree Search

Random Restart

Outside the exact framework
(beyond greedy search)
® Random Restart
¢ Rollout/Pilot Method
® Beam Search
® |terated Greedy
* GRASP
(Adaptive lterated Construction Search)

® (Multilevel Refinement)

13



Outline

1. Bounded backtrack

14



Bounded backtrack

Bounded-backtrack search:

bbs(10)

Depth-bounded, then bounded-backtrack search:

dbs(2, bbs(0))

http://4c.ucc.ie/“hsimonis/visualization/techniques/partial_search/main.htm

15


http://4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm

Credit-based search

Initial Credit &

Key idea: important decisions are at the top

of the tree Gredlit Search

Credit = backtracking steps

Credit distribution: one half at the best child
the other divided among the other children.

When credits run out follow deterministic
best-search

In addition: allow limited backtracking steps
(eg, 5) at the bottom

Control parameters: initial credit,
distribution of credit among the children,
amount of local backtracking at bottom.

16



Outline

2. Limited Discrepancy Search

17



Limited Discrepancy Search

Limited Discrepancy Search (LDS)

e Key observation that often the heuristic used
in the search is nearly always correct with
just a few exceptions.

® Explore the tree in increasing number of
discrepancies, modifications from the
heuristic choice.

® Eg: count one discrepancy if second best is
chosen
count two discrepancies either if third best is
chosen or twice the second best is chosen

® Control parameter: the number of
discrepancies

18



Outline

3. Random Restart

20



Randomization in Tree Search

The idea comes from complete search: the important decisions are made up in the search tree
(backdoors - set of variables such that once they are instantiated the remaining problem simplifies
to a tractable form)

~~ random selections + restart strategy

Random selections

® randomization in variable ordering:

breaking ties at random

use heuristic to rank and randomly pick from small factor from the best
random pick among heuristics

random pick variable with probability depending on heuristic value

® randomization in value ordering:

® just select random from the domain
Restart strategy in backtracking

e Example: S, = (1,1,2,1,1,2,4,1,1,2,1,1,4,8,1,...)

21



Outline

4. Rollout/Pilot Method

22



Rollout/Pilot Method

Derived from A*

Each candidate solution is a collection of . components S = (51, s2,...,5,,).

® Master process adds components sequentially to a partial solution S, = (s1, s2,...5k)

At the k-th iteration the master process evaluates feasible components to add based on an
heuristic look-ahead strategy.

The evaluation function H (S 1) is determined by sub-heuristics that complete the solution
starting from S,

Sub-heuristics are combined in H(Sj41) by

® weighted sum
® minimal value

23



Speed-ups:
® halt whenever cost of current partial solution exceeds current upper bound

® evaluate only a fraction of possible components

24



Outline

5. Beam Search

25



Beam Search

Based on the tree search framework:

maintain a set B of bw (beam width) partial candidate solutions

at each iteration extend each solution from B in fw (filter width) possible ways
rank each bw x fw candidate solutions and take the best bw partial solutions
complete candidate solutions obtained by 53 are maintained in 5y

Stop when no partial solution in B is to be extended

26



Outline

6. GRASP

27



GRASP

Greedy Randomized Adaptive Search Procedure

Key Idea: Combine randomized constructive search with subsequent local search.

Motivation:

® Candidate solutions obtained from construction heuristics can often be substantially improved
by local search.

® | ocal search methods often require substantially fewer steps to reach high-quality solutions
when initialized using greedy constructive search rather than random picking.

® By iterating cycles of constructive + local search, further performance improvements can be
achieved.

28



Greedy Randomized “Adaptive” Search Procedure (GRASP):
while termination criterion is not satisfied do
generate candidate solution s using
subsidiary greedy randomized constructive search
perform subsidiary local search on s

® Randomization in constructive search ensures that a large number of good starting points for
subsidiary local search is obtained.
® Constructive search in GRASP is ‘adaptive’ (or dynamic):
Heuristic value of solution component to be added to
a given partial candidate solution may depend on
solution components present in it.
® Variants of GRASP without local search phase
(aka semi-greedy heuristics) typically do not reach
the performance of GRASP with local search.

29



Restricted candidate lists (RCLs)

® Each step of constructive search adds a solution component selected uniformly at random
from a restricted candidate list (RCL).

® RCLs are constructed in each step using a heuristic function h.

® RCLs based on cardinality restriction comprises the % best-ranked solution components. (k is a
parameter of the algorithm.)

® RCLs based on value restriction comprise all solution components [ for which
h(l) < hmin + @ (hmaz — hmin),
where ,,;, = minimal value of 1 and h,,4, = maximal value
of h for any [. (« is a parameter of the algorithm.)

® Possible extension: reactive GRASP (e.g., dynamic adaptation of «
during search)

30



Example: Squeaky Wheel

Key idea: solutions can reveal problem structure which maybe worth to exploit.

Use a greedy heuristic repeatedly by prioritizing the elements that create troubles.

Squeaky Wheel

e Constructor: greedy algorithm on a sequence of problem elements.

® Analyzer: assign a penalty to problem elements that contribute to flaws in the current solution.

® Prioritizer: uses the penalties to modify the previous sequence of problem elements. Elements
with high penalty are moved toward the front.

Possible to include a local search phase between one iteration and the other

31



Outline

7. lterated Greedy

32



Iterated Greedy

Key idea: use greedy construction
® alternation of construction and deconstruction phases

® an acceptance criterion decides whether the search continues from the new or from the old
solution.

Iterated Greedy (IG):

determine initial candidate solution s

while termination criterion is not satisfied do
ri==Ss
(randomly or heuristically) destruct part of s
greedily reconstruct the missing part of s
based on acceptance criterion,

keep s or revert to s :=r

33



	Bounded backtrack
	Limited Discrepancy Search
	Random Restart
	Rollout/Pilot Method
	Beam Search
	GRASP
	Iterated Greedy

