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Population Based Meta.
Multi-Objective OptimizationEvolutionary Algorithms

Key idea (Inspired by Darwinian model of biological evolution): Maintain a population of
individuals that compete for survival, and generate new individuals, which in turn again compete
for survival

Iteratively apply genetic operators: mutation, recombination, selection to a population of candidate
solutions.
• Mutation introduces random variation in the genetic material of individuals (unary operator)

• Recombination of genetic material during reproduction produces offspring that combines
features inherited from both parents (N-ary operator)

• Differences in evolutionary fitness lead selection of genetic traits (‘survival of the fittest’).
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Population Based Meta.
Multi-Objective Optimization

Evolutionary Algorithm (EA):
determine initial population sp

while termination criterion is not satisfied: do
generate set spr of new candidate solutions

by recombination

generate set spm of new candidate solutions
from spr and sp by mutation

select new population sp from
candidate solutions in sp, spr, and spm
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Population Based Meta.
Multi-Objective OptimizationOriginal Streams

• Evolutionary Programming [Fogel et al. 1966]:
• mainly used in continuous optimization
• typically does not make use of recombination and uses stochastic selection based on tournament

mechanisms.
• often seeks to adapt the program to the problem rather than the solutions

• Evolution Strategies [Rechenberg, 1973; Schwefel, 1981]:
• similar to Evolutionary Programming (developed independently)
• originally developed for (continuous) numerical optimization problems;
• operate on more natural representations of candidate solutions;
• use self-adaptation of perturbation strength achieved by mutation;
• typically use elitist deterministic selection.

• Genetic Algorithms (GAs) [Holland, 1975; Goldberg, 1989]:
• mostly for discrete optimization;
• often encode candidate solutions as bit strings of fixed length, (which is now known to be

disadvantageous for combinatorial problems such as the TSP).
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Population Based Meta.
Multi-Objective Optimization

Problem: Pure evolutionary algorithms often lack
capability of sufficient search intensification.

Solution: Apply subsidiary local search after initialization, mutation and recombination.

Memetic Algorithms [Dawkins, 1997, Moscato, 1989]
• transmission of memes, mimicking cultural evolution which is supposed to be direct and

Lamarckian
• (aka Genetic/Evolutionary Local Search, or Hybrid Evolutionary Algorithms if more involved

local search including other metaheuristics, eg, tabu search)
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Population Based Meta.
Multi-Objective Optimization

Memetic Algorithm (MA):
determine initial population sp
perform subsidiary local search on sp
while termination criterion is not satisfied: do

generate set spr of new candidate solutions
by recombination

perform subsidiary local search on spr
generate set spm of new candidate solutions

from spr and sp by mutation
perform subsidiary local search on spm
select new population sp from

candidate solutions in sp, spr, and spm
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Population Based Meta.
Multi-Objective OptimizationTerminology

Individual ⇐⇒ Solution to a problem

Genotype space ⇐⇒ Set of all possible individuals determined by the solution encoding

Phenotype space ⇐⇒ Set of all possible individuals determined by the genotypes (ie, the
variable–value themselves)

Population ⇐⇒ Set of candidate solutions

Chromosome ⇐⇒ Representation for a solution in the population

Gene and Allele ⇐⇒ Part and value of the representation of a solution (e.g., parameter
or degree of freedom)

Fitness ⇐⇒ Quality of a solution

Crossover Mutation ⇐⇒ Search Operators

Natural Selection ⇐⇒ Promoting the reuse of good solutions
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Population Based Meta.
Multi-Objective OptimizationSolution representation

Separation between solution encode/representation (genotype) from actual solution (phenotype)

Let X be the search space of a problem

• genotype set made of strings of length l whose elements are symbols from an alphabet
A⇝ set of all individuals is Al

• the elements of strings are the genes
• the values that each element can take are the alleles

• the search space is S ⊆ Al (set of feasible solutions)

• if the strings are member of a population they are called chromosomes and their
recombination crossover

• an expression maps individual to solutions (phenotypes) c : Al → X (example, unrelated
parallel machine and Steiner tree)

• strings are evaluated by f (c(s)) = g(s) which gives them a fitness
10
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Multi-Objective Optimization

Example

Note: binary representation is appealing but not always good (in constrained problems binary
crossovers might not be good)
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Population Based Meta.
Multi-Objective OptimizationConjectures on the goodness of EA

Schema: subset of Al where strings have a set of variables fixed.
Ex.: S = 1 * * 1

1 Exploit intrinsic parallelism of schemata (but epistasis)

2 Schema Theorem [Holland]:

E [N(S , t + 1)] ≥ F (S , t)

F̄ (t)
N(S , t)[1− ϵ(S , t)]

N(S , t) instances of a given schema S in population at generation t, F̄ (t) av. fitness of
population, F (S , t) fitness schema, ϵ(S , t) destroy effect on S of operators

• a method for solving all problems ⇒ disproved by
No Free Lunch Theorems: no metaheuristic is better than random search; success comes from
adapting the method to the problem at hand

• building block hypothesis
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Population Based Meta.
Multi-Objective OptimizationInitial Population

• Generation: often, independent, uninformed random picking from
given search space.

• Which size? Trade-off

• Minimum size: connectivity by recombination is achieved if at least one instance of every allele
is guaranteed to be present at each gene.
Eg: binary repr. and uniform sampling with replacement:

Pr{presence of allele in M strings of length l} = (1− (0.5)M)l

for l = 50, it is sufficient M = 17 to guarantee P∗
2 > 99.9%.

• Attempt to cover at best the search space, eg, Latin hypercube,
Quasi-random (low-discrepancy) methods (Quasi-Monte Carlo method).

• But: can also use multiple runs of randomized construction heuristic.
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Population Based Meta.
Multi-Objective OptimizationQuasi-Monte Carlo sampling

Left, quasi Monte Carlo sampling method based on low-discrepancy sequences. [Bratley, P., Fox, B.L.,
Niederreiter, H.: Algorithm-738 - programs to generate niederreiters low-discrepancy sequences. ACM Transactions
On Mathematical Software 20(4), 494–495]
Right, uniformly at random. 14
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Population Based Meta.
Multi-Objective OptimizationSelection

Main idea: selection should be related to fitness
• Fitness proportionate selection (roulette-wheel method)

pi =
fi∑
j fj

• Tournament selection: a set of chromosomes is chosen and compared and the best
chromosomes chosen.

• Rank based and selection pressure

• Fitness sharing (aka niching): probability of selection proportional to the number of other
individuals in the same region of the search space.
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Population Based Meta.
Multi-Objective Optimization

Selection pressure:
pk = α+ βk probability for individual ranked kth (linear function){ ∑M

k=1(α+ βk) = 1
ϕ = Pr[selecting the best]

Pr[selecting the median] selection pressure

Pr[selecting the best] = α+ βM; Pr[selecting the median] = α+ β(M+1
2 )

Solving the system of equations

α =
2M − ϕ(M + 1)

M(M − 1)
β =

2(ϕ− 1)
M(M − 1)

1 ≤ ϕ ≤ 2

Then for a pseudo-random number the selected individual k from the cumulative probability is
found in O(1) solving the quadratic equation:

k∑
i=1

α+
k∑

i=1

βi = αk + β
(k + 1)k

2
= r
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Population Based Meta.
Multi-Objective OptimizationCrossovers

Recombination operator (Crossover)

• Binary or assignment representations
• one-point, two-point, m-point (preference to positional bias w.r.t. distributional bias)
• uniform cross over

(through a mask controlled by a Bernoulli parameter p)
• Permutations

• Partially mapped crossover (PMX)
• Order crossover (OX)
• Mask based crossover
• Cycle crossover (CX)

• Sets
• greedy partition crossover (GPX)

• Real vectors
• arithmetic crossovers
• k-point crossover
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Multi-Objective OptimizationAssignments

Example: crossovers for binary representations
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Population Based Meta.
Multi-Objective OptimizationAssignments

Uniform (mask):

s1: 1010101010
s2: 1110001110

mask: 1101011110

o1: 1010001010
o2: 1110101110
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Population Based Meta.
Multi-Objective OptimizationPermutations

Permutations: relations of interest: adjacency, relative position, absolute position
Partially mapped crossover (PMX): defines interchanges

s1: 16 345 2
s2: 43 126 5

o1: __ 126 _
o2: __ 345 _

in o1: 3 is mapped to 1, 4 is mapped to 2, 5 is mapped to 6 in o2: viceversa

o1: 35 126 4
o2: 21 345 6
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Population Based Meta.
Multi-Objective OptimizationPermutations

Order crossovers:
One point crossover: q ∈ {1..n} at random

πo1
λ := πs2

λ λ = 1..q
πo1
λ := πs1

k k smallest with πs1
k ̸∈ {π

o1
1 ..πo1

λ }

s1: 7132 58469
s2: 1426 39875

o1: 1426 73589
o2: 7132 46985

preserves relative positions
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Population Based Meta.
Multi-Objective OptimizationPermutations

Order crossovers:
Two point crossover: q1, q2 ∈ {1..n}, q1 < q2 at random

πo1
λ := πs2

λ λ = 1..q1, q2..k
πo1
λ := πs1

k k smallest with πs1
k ̸∈ {π

o1
1 ..πo1

λ }

s1: 71 3258 469
s2: 14 2639 875

o1: 14 ____ 875
o2: 71 ____ 469

o1: 14 ____ 875
o2: 71 2385 469

preserves relative positions
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Multi-Objective OptimizationPermutations

Order crossovers, mask based crossover:
Uniform crossover: λ = {1..n}, ξλ ∈ {0, 1}

if ξλ = 1 πo1
λ := πs2

k k smallest with πs2
k ̸∈ {π

o1
1 ..πo1

λ }
if ξλ = 0 πo1

λ := πs1
k k smallest with πs1

k ̸∈ {π
o1
1 ..πo1

λ }
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Multi-Objective OptimizationPermutations

Cycle crossover:

• divide elements into cycles
• select randomly cycles from parents
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Population Based Meta.
Multi-Objective OptimizationSets

Partitions:
Greedy partitioning crossover

s1={{1,2,3,4},{5,6,7},{8,9,10}}
s2={{4,6,7,8},{1,2,10},{3,5,9}}

choose the largest set left alternating parent selection
s1={{ , , , }{5, , }{ , , }}
s2={{ , , , },{ , , },{ ,5, }}

o1={{1,2,3,4},{6,7,8},{9,10}}

reassign randomly left elements

o1={{1,2,3,4},{6,7,8,5},{9,10}}
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Multi-Objective Optimization

• Crossovers appear to be a crucial feature of success

• Therefore, more commonly: ad hoc crossovers

• Two off-springs are generally generated

• Crossover rate controls the application of the crossover. May be adaptive: high at the start
and low when convergence
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Population Based Meta.
Multi-Objective OptimizationMutation

• Goal: Introduce relatively small perturbations in candidate solutions in current population +
offsprings obtained from recombination

• Typically, perturbations are applied stochastically and independently to each candidate solution

• Mutation rate controls the application of bit-wise mutations.
It may be adaptive: low at the start and high when convergence

• Possible implementation through Poisson variable which determines the m genes which are
likely to change allele.

• Can also use subsidiary selection function to determine subset of candidate solutions to which
mutation is applied.

• With real vector representation: Gaussian mutation
28



Population Based Meta.
Multi-Objective OptimizationSubsidiary local search

• Often useful and necessary for obtaining high-quality candidate solutions.

• Typically consists of selecting some or all individuals in
the given population and applying an iterative improvement procedure to each element of this
set independently.
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Population Based Meta.
Multi-Objective OptimizationNew Population

• Determines population for next cycle (generation) of the algorithm by selecting individual
candidate solutions from

• current population +
• new candidate solutions from recombination, mutation

(and subsidiary local search).

• Generational Replacement (λ, µ): λ← µ

• Elitist strategy (λ+ µ) the best candidates are always selected

• Steady state (most common) only a small number of least fit individuals is replaced

• Goal: Obtain population of high-quality solutions while maintaining population diversity.

Survival of the fittest and maintenance of diversity (duplicates avoided)
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Population Based Meta.
Multi-Objective OptimizationExample

A memetic algorithm for TSP
• Search space: set of Hamiltonian cycles

Tours represented as permutations of vertex indexes.
• Initialization: by randomized greedy heuristic (partial tour of n/4 vertices constructed

randomly before completing with greedy).
• Recombination: greedy recombination operator GX applied to n/2 pairs of tours chosen

randomly:
1) copy common edges (param. pe)
2) add new short edges (param. pn)
3) copy edges from parents ordered by increasing length (param. pc)
4) complete using randomized greedy.

• Subsidiary local search: LK variant.
• Mutation: apply double-bridge to tours chosen uniformly at random.
• Selection: Selects the µ best tours from current population of µ+ λ tours (=simple elitist

selection mechanism).
• Restart operator: whenever average bond distance in the population falls below 10.
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Population Based Meta.
Multi-Objective OptimizationTheoretical studies

• Through Markov chains modelling some versions of evolutionary algorithms can be made to
converge with probability 1 to the best possible solutions in the limit [Fogel, 1992; Rudolph,
1994].

• Convergence rates on mathematically tractable functions or with local approximations [Bäck
and Hoffmeister, 2004; Beyer, 2001].

• "No Free Lunch Theorem" [Wolpert and Macready, 1997]. On average, within some
assumptions, blind random search is as good at finding the minimum of all functions as is hill
climbing.

However:
• These theoretical findings are not very practical.
• EAs are made to produce useful solutions rather than perfect solutions.
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Multi-Objective OptimizationNo Free Lunch Theorem
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Population Based Meta.
Multi-Objective OptimizationResearch Goals

• Analyzing classes of optimization problems and determining experimentally the best
components for evolutionary algorithms.

• Applying evolutionary algorithms to problems that are dynamically changing.

• Gaining theoretical insights for the choice of components.

• Prove bounds on the runtime that such algorithms have in order to obtain optimal or nearly
optimal solutions.
Bio-inspired algorithms are

• general-purpose algorithms
• randomized algorithms = stochastic search algorithms

computational complexity analysis is achieved by bounding the expected runtime to achieve
good solutions for a certain problem
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Multi-Objective OptimizationReferences
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Population Based Meta.
Multi-Objective OptimizationParallel Implementations

• Population based heuristics lends theselves naturally to parallel implementations

• Trajectory based heuristics are less prone to parallelizations: parallelize the neighborhood
exploration by delegating move evaluations to child processes.
keep move generation and move selection at the parent (master) level
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Population Based Meta.
Multi-Objective OptimizationOther Nature Inspired Algorithms

A literature search on the Unit Commitment Problem (a mixed discrete continuous opt. problem)
unveiled at least the following attempts:

• Harmony search
• Differential evolution algorithm
• Quantum-inspired evolutionary algorithm
• Particle swarm optimization
• Bee colony algorithm
• Bacterial foraging-based solution
• Coyote optimization algorithm
• Firefly algorithm
• Imperialistic competition algorithm

• Flower pollination algorithm
• Mine blast algorithm
• Binary grasshopper optimization algorithm
• Binary grey wolf optimizer
• Binary fireworks algorithm
• Binary cuckoo search algorithm
• Binary fish swarm algorithm
• Binary shuffled frog leaping algorithm
• Hopfield neural network

See also:
• Evolutionary Computation Bestiary: https://github.com/fcampelo/EC-Bestiary
• “Metaheuristics—the metaphor exposed”, Kenneth Sörensen, 2013
https://doi.org/10.1111/itor.12001 37

https://github.com/fcampelo/EC-Bestiary
https://doi.org/10.1111/itor.12001
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Population Based Meta.
Multi-Objective OptimizationMulti-Objective Optimization: Basics

• Objective vector f = [f1, . . . , fQ ]

• We want to minimize f but what does it mean?
• Weighted sum
• Lexicographic
• Pareto optimality (without previous knwoledge on component importance)
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Population Based Meta.
Multi-Objective OptimizationBasic Notions

Let u and v be vectors in RQ :
weak component-wise order u ≦ v ui ≤ vi , i = 1, . . . ,Q;
component-wise order u ≤ v ui ≤ vi , i = 1, . . . ,Q and u ̸= v ;
strict component-wise order u < v ui < vi , i = 1, . . . ,Q

Let s and s ′ be two solutions to a problem P with objective function f :

f (s) weakly dominates f (s ′) iff f (s) ≦ f (s ′)
f (s) dominates f (s ′) iff f (s) ≤ f (s ′)
f (s) strictly dominates f (s ′) iff f (s) < f (s ′)

• f (s) and f (s ′) are non-dominated if f (s) ≰ f (s ′) and f (s ′) ≰ f (s)

• f (s) and f (s ′) are non-weakly dominated if f (s) ≦̸ f (s ′) and f (s ′) ≦̸ f (s)

• A solution s is a Pareto global optimum solution iff there is no s ′ ∈ S such that f (s ′) ≤ f (s)
• A set of solutions S is a Pareto global optimum set iff it contains only and all Pareto global

optimum solutions.
40



Population Based Meta.
Multi-Objective OptimizationBasic Notions

• Efficient set (or Pareto frontier) is the image of the Pareto global optimum set in the objective
space.

• S ′ ⊆ S is strict Pareto global optimum set iff:
• it contains only Pareto global optimum solutions
• the corresponding set of objective function value vectors coincides with the efficient set and its

elements are unique.
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Population Based Meta.
Multi-Objective OptimizationExample – Multi-objective TSP

Pareto global optimum set:

π f (π)
π = [u, v ,w , x , y ] [5, 10]
π = [u,w , v , x , y ] [8, 8]
π = [u, v ,w , x , y ] [10, 7]

strict Pareto global optimum set

if all edges had weights, eg, (3, 3), then all
(5
2

)
solutions would have cost [5 · 3, 5 · 3] and would
be in the Pareto global optimum set. However,
both the efficient set and the strict Pareto global
optimum set would have one single solution,
which is any of the feasible ones.
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Multi-Objective OptimizationBasic Notions

Computational class #P: concerned with counting the number of solutions.

A counting problem belongs to #P if there is a polynomial nondeterministic algorithm such that for
any instance of the problem, it computes a number of yes-answers that is equal to the number of
distinct solutions of that instance.

Class #P-complete: a problem P1 is #P-complete if it belongs to #P and for all problems P2 in
#P there exists a polynomial transformation from P1 to P2 such that any instance of P1 is
mapped into an instance of P2 with the same number of yes-answers as the instance of P1.

43



Population Based Meta.
Multi-Objective OptimizationBasic Notions

Given two arbitrary sets of objective function value vectors in a Q-dimensional objective space,
A = {a1, . . . am} and B = {b1, . . .bn}

strictly dominates dominates better than

weakly dominates incomparable
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Population Based Meta.
Multi-Objective OptimizationEvolutionary Algorithms Approaches

• strength Pareto EA (SPEA) [Zitzler and Thiele, 1998]
maintain an external population at every generation storing all non-dominated solutions discovered so
far beginning from the initial population. This external population participates in genetic operations.
At each generation, a combined population with the external and the current population is first
constructed. All non-dominated solutions in the combined population are assigned a fitness based on
the number of solutions they dominate and dominated solutions are assigned fitness worse than the
worst fitness of any non-dominated solution. A deterministic clustering technique is used to ensure
diversity among non-dominated solutions.

• Pareto-archived evolution strategy (PAES) [Knowles and Gome, 1999]
one parent and one child, the child is compared with respect to the parent. If the child dominates the
parent, the child is accepted as the next parent and the iteration continues. If the parent dominates
the child, the child is discarded and a new mutated solution (a new child) is found. If the child and the
parent do not dominate each other, the choice between the child and the parent is made by comparing
them with an archive of best solutions found so far. Both domination and diversity are considered.
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Multi-Objective OptimizationEvolutionary Algorithms Approaches

• elitist GA [Rudolph, 1999]
systematic comparison of individuals from parent and offspring populations.
The non-dominated solutions of the offspring population are compared with parent solutions to form
an overall non-dominated set of solutions, which becomes the parent population of the next iteration.
If the size of this set is not greater than the desired population size, other individuals from the
offspring population are included.

• Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization:
NSGA-II [Deb, Agrawal, Pratap, Meyarivan, 2000]
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Population Based Meta.
Multi-Objective OptimizationNSGA-II: Main Components

Systematic comparison between solutions to find the non-dominated fronts.
It requires O(MN3) if only one solution in each front. (M number of objectives, N population size)

Fast non-dominated sorting approach in O(MN2)
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Multi-Objective OptimizationNSGA-II: Main Components

Density estimation (crowding distance) of a
particular point in the population: average
distance of the two points on either side of this
point along each of the objectives
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Population Based Meta.
Multi-Objective OptimizationNSGA-II: Main Components

The crowded comparison operator ≺n guides the selection process towards a uniformly spread-out
Pareto-optimal front.

Let us assume that every individual i in the population has two attributes.
1 Non-domination rank (srank)
2 Local crowding distance (sdistance)

Partial order ≺n:
s ≺n s ′ if (srank < s ′rank) or ((srank = s ′rank) ∧ (sdistance > s ′distance))
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Multi-Objective OptimizationNSGA-II: Algorithm

• Initially, a random parent population P0 is created. The population is sorted based on the
non-domination. Each solution is assigned a fitness equal to its non-domination level (1 is the
best level). Thus, minimization of fitness is assumed.

• Binary tournament selection, recombination, and mutation operators are used to create a child
population Q0 of size N.

• At each iteration t > 1 and for a particular generation an elitism procedure is used:
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Machines 2021, 9, p. 156
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Multi-Objective OptimizationIteration Complexity

At each generation, the basic operations being performed and the worst case complexities
associated with it are as follows:

1 Non-dominated sort is O(MN2),
2 Crowding distance assignment is O(MN logN)

3 Sort on ≺n is O(2N log(2N))

The overall complexity of the single iteration is O(MN2).
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