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Local Search Revisited
Computational Complexity
On the AssignmentNeighborhood Operator

Goal: providing a formal description of neighborhood functions for the three main solution
representations:

• Permutation
• linear permutation: Single Machine Total Weighted Tardiness Problem
• circular permutation: Traveling Salesman Problem

• Assignment: SAT, CSP
• Set, Partition: Max Independent Set

A neighborhood function N : S → 2S is also defined through an operator.
An operator ∆ is a collection of operator functions δ : S → S such that

s ′ ∈ N(s) ⇐⇒ ∃δ ∈ ∆ | δ(s) = s ′
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Local Search Revisited
Computational Complexity
On the AssignmentPermutations

Sn indicates the set all permutations of the numbers {1, 2, . . . , n}

(1, 2 . . . , n) is the identity permutation ι.

If π ∈ Π(n) and 1 ≤ i ≤ n then:
• πi is the element at position i
• posπ(i) is the position of element i

Alternatively, a permutation is a bijective function π(i) = πi

The permutation product π · π′ is the composition (π · π′)i = π′(π(i))

For each π there exists a permutation such that π−1 · π = ι
π−1(i) = posπ(i)

∆N ⊂ Sn
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Local Search Revisited
Computational Complexity
On the AssignmentLinear Permutations

Swap operator
∆S = {δiS | 1 ≤ i ≤ n}

δiS(π1 . . . πiπi+1 . . . πn) = (π1 . . . πi+1πi . . . πn)

Interchange operator
∆X = {δijX | 1 ≤ i < j ≤ n}

δijX (π) = (π1 . . . πi−1πjπi+1 . . . πj−1πiπj+1 . . . πn)

(≡ set of all transpositions)

Insert operator
∆I = {δijI | 1 ≤ i ≤ n, 1 ≤ j ≤ n, j ̸= i}

δijI (π) =

{
(π1 . . . πi−1πi+1 . . . πjπiπj+1 . . . πn) i < j
(π1 . . . πjπiπj+1 . . . πi−1πi+1 . . . πn) i > j
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Local Search Revisited
Computational Complexity
On the AssignmentCircular Permutations

Reversal (2-edge-exchange)
∆R = {δijR | 1 ≤ i < j ≤ n}

δijR(π) = (π1 . . . πi−1πj . . . πiπj+1 . . . πn)

Block moves (3-edge-exchange)

∆B = {δijkB | 1 ≤ i < j < k ≤ n}

δijB(π) = (π1 . . . πi−1πj . . . πkπi . . . πj−1πk+1 . . . πn)

Short block move (Or-edge-exchange)

∆SB = {δijSB | 1 ≤ i < j ≤ n}

δijSB(π) = (π1 . . . πi−1πjπj+1πj+2πi . . . πj−1πj+3 . . . πn)

8



Local Search Revisited
Computational Complexity
On the AssignmentAssignments

An assignment can be represented as a mapping σ : {X1 . . .Xn} → {v : v ∈ D, |D| = k}:

σ = {Xi = vi ,Xj = vj , . . .}

One-exchange operator

∆1E = {δil1E | 1 ≤ i ≤ n, 1 ≤ l ≤ k}

δil1E
(
σ) =

{
σ′ : σ′(Xi ) = vl and σ′(Xj) = σ(Xj) ∀j ̸= i

}
Two-exchange operator

∆2E = {δij2E | 1 ≤ i < j ≤ n}

δij2E (σ) =
{
σ′ : σ′(Xi ) = σ(Xj), σ

′(Xj) = σ(Xi ) and σ′(Xl) = σ(Xl) ∀l ̸= i , j
}
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Local Search Revisited
Computational Complexity
On the AssignmentPartitioning

An assignment can be represented as a partition of objects selected and not selected
s : {X} → {C ,C} (it can also be represented by a bit string)

One-addition operator
∆1E = {δv1E | v ∈ C̄}

δv1E
(
s) =

{
s : C ′ = C ∪ v and C̄ ′ = C̄ \ v}

One-deletion operator
∆1E = {δv1E | v ∈ C}

δv1E
(
s) =

{
s : C ′ = C \ v and C̄ ′ = C̄ ∪ v}

Swap operator
∆1E = {δv1E | v ∈ C , u ∈ C̄}

δv1E
(
s) =

{
s : C ′ = C ∪ u \ v and C̄ ′ = C̄ ∪ v \ u}

10



Local Search Revisited
Computational Complexity
On the AssignmentDistances

Set of paths in GN with s, s ′ ∈ S :

Φ(s, s ′) = {(s1, . . . , sh) | s1 = s, sh = s ′ ∀i : 1 ≤ i ≤ h − 1, ⟨si , si+1⟩ ∈ E (GN)}

If ϕ = (s1, . . . , sh) ∈ Φ(s, s ′) let |ϕ| = h be the length of the path; then the distance between any
two solutions s, s ′ is the length of shortest path between s and s ′ in GN :

dGN
(s, s ′) = min

ϕ∈Φ(s,s′)
|Φ|

diam(GN) = max{dGN
(s, s ′) | s, s ′ ∈ S} (= maximal distance between any two candidate solutions)

(= worst-case lower bound for number of search steps required for reaching (optimal) solutions)

Note: with permutations it is easy to see that:

dGN
(π, π′) = dGN

(π−1 · π′, ι)
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Local Search Revisited
Computational Complexity
On the Assignment

Distances for Linear Permutation Representations

• Swap neighborhood operator
computable in O(n2) by the precedence based distance metric:
dS(π, π

′) = #{⟨i , j⟩|1 ≤ i < j ≤ n, posπ′(πj) < posπ′(πi )}.
diam(GN) = n(n − 1)/2

• Interchange neighborhood operator
Computable in O(n) + O(n) since dX (π, π

′) = dX (π
−1 · π′, ι) = n − c(π−1 · π′)

c(π) is the number of disjoint cycles that decompose a permutation.
diam(GNX

) = n − 1

• Insert neighborhood operator
Computable in O(n) + O(n log(n)) since dI (π, π

′) = dI (π
−1 · π′, ι) = n − |lis(π−1 · π′)| where

lis(π) denotes the length of the longest increasing subsequence.
diam(GNI

) = n − 1
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Local Search Revisited
Computational Complexity
On the Assignment

Distances for Circular Permutation Representations

• Reversal neighborhood operator
sorting by reversal is known to be NP-hard
surrogate in TSP: bond distance

• Block moves neighborhood operator
unknown whether it is NP-hard but there does not exist a proved polynomial-time algorithm
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Local Search Revisited
Computational Complexity
On the Assignment

Distances for Assignment Representations

• Hamming Distance

• An assignment can be seen as a partition of n in k mutually exclusive non-empty subsets

One-exchange neighborhood operator
The partition-distance d1E (P,P ′) between two partitions P and P ′ is the minimum number of
elements that must be moved between subsets in P so that the resulting partition equals P ′.

The partition-distance can be computed in polynomial time by solving an assignment problem.
Given the assignment matrix M where in each cell (i , j) it is |Si ∩ S ′

j | with Si ∈ P and S ′
j ∈ P ′

and defined A(P,P ′) the assignment of maximal sum then it is d1E (P,P ′) = n − A(P,P ′)
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Local Search Revisited
Computational Complexity
On the Assignment

Example: Search space size and diameter for the TSP

• Search space size = (n − 1)!/2

• Insert neighborhood
size = (n − 3)n
diameter = n − 2

• 2-exchange neighborhood
size =

(
n
2

)
= n · (n − 1)/2

diameter in [n/2, n − 2]

• 3-exchange neighborhood
size =

(
n
3

)
= n · (n − 1) · (n − 2)/6

diameter in [n/3, n − 1]
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Local Search Revisited
Computational Complexity
On the Assignment

Let N1 and N2 be two different neighborhood functions for the same instance (S , f , π) of a
combinatorial optimization problem.
If for all solutions s ∈ S we have N1(s) ⊆ N2(s) then we say that N2 dominates N1

Example:

In TSP, 1-insert is dominated by 3-exchange.
(1-insert corresponds to 3-exchange and there are 3-exchanges that are not 1-insert)
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Local Search Revisited
Computational Complexity
On the AssignmentSearch Landscape

Given:
• Problem instance π

• Search space Sπ

• Neighborhood function N : S ⊆ 2S

• Evaluation function fπ : S → R

Definition:
The search landscape L is the vertex-labeled neighborhood graph given by the triplet
L = ⟨S ,N, f ⟩.
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Local Search Revisited
Computational Complexity
On the AssignmentSearch Landscape

Transition Graph of Iterative Improvement
Given L = ⟨S ,N, f ⟩, the transition graph of iterative improvement is a directed acyclic subgraph
obtained from L by deleting all arcs (i , j) for which it holds that the cost of solution j is worse than
or equal to the cost of solution i .

It can be defined for other algorithms as well and it plays a central role in the theoretical analysis of
proofs of convergence.
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Idealized visualization of landscapes principles

Simplified landscape representation Tabu Search Guided Local Search

Iterated Local Search Evolutionary Alg.



Local Search Revisited
Computational Complexity
On the AssignmentFundamental Properties

The behavior and performance of an LS algorithm on a given problem instance crucially depends on
properties of the respective search landscape.

Simple properties:
• search space size |S |
• reachability: solution j is reachable from solution i if neighborhood graph has a path from i to

j .
• strongly connected neighborhood graph
• weakly optimally connected neighborhood graph

• distance between solutions
• neighborhood size (ie, degree of vertices in neigh. graph)
• cost of fully examining the neighborhood
• relation between different neighborhood functions

(if N1(s) ⊆ N2(s) forall s ∈ S then N2 dominates N1)
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Local Search Revisited
Computational Complexity
On the AssignmentComputational Complexity of LS

For a local search algorithm to be effective, search initialization
and individual search steps should be efficiently computable.

Complexity class PLS: class of problems for which a local
search algorithm exists with polynomial time complexity for:

• search initialization
• any single search step, including computation of

evaluation function value

For any problem in PLS . . .
• local optimality can be verified in polynomial time
• improving search steps can be computed in polynomial time
• but: finding local optima may require super-polynomial time
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Local Search Revisited
Computational Complexity
On the AssignmentComputational Complexity of LS

PLS-complete: Among the most difficult problems in PLS;
if for any of these problems local optima can be found
in polynomial time, the same would hold for all problems in PLS.

Some complexity results:
• TSP with k-exchange neighborhood with k > 3

is PLS-complete.

• TSP with 2- or 3-exchange neighborhood is in PLS, but PLS-completeness is unknown.
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Local Search Revisited
Computational Complexity
On the AssignmentComments to Last Year Submissions

- Focus on relevant aspects, not on trivial and known features. For
example, explaining the Code Framework is not necessary as we all know
about it. The algorithmic sketch must be on a relevant and original
procedure. What you choose to describe and to show algorithmically
will also be used to decide the grade.

- Be formal and do not use terms like "stupid". Do not tell about lack
of time (everybody always lacks of time anyway).

- Do not make speculations but try to support your claims by
experimental or analytic evidence.

- Define the notation that you use
- The calculation of the Delta by incremental updates is a requirement
- Recognize the algorithms that you end up implementing and give them

name.
- Random restart is really a basic algorithm and you have to do better

than that.
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Local Search Revisited
Computational Complexity
On the Assignment

- You will get credit for how involved the method is and for the amount
of work done.

- Check whether your algorithm has chances for ending in a loop. That
would be bad.

- Your algorithms must be 100% reproducible by only reading the report.

- Make a clear list of the algorithms you tested and give names to the
algorithms you are describing. In this way it becomes clearer what you
are precisely referring to. When writing the name of the algorithms
use a different style, for example, sanserif or slanted, etc.

- Remember to give the big O analysis of the main procedures, that is,
constructing a solution, initializing the data structures, evaluating
a move, deciding a step in the local search and updating the data
structures (ie, ensuring invariants).
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Local Search Revisited
Computational Complexity
On the Assignment

- Write the report keeping in mind that the reader will be the external
censor. He/She is acknowledged about local search and
heuristics but has not been at the lectures and hence does not know
what we have precisely discussed about.

- Consider carefully the focus of your description and algorithmic
sketches. This choice is alone providing to the examiners an
indication of the level reached in this course. Reporting general
sketches that have been seen in class is not a smart choice. A more
appropriate choice is showing the specialized, non-trivial procedures
that you have developed, that may indicate the originality and depth
of thought in your work.

- Make it possible to distinguish entities in your plots to both readers
that will print in colors and to those that will print in black and
white.

- Leave a space before opening a parenthesis. Example: "Heuristics(DM841)" is
wrong. "Heuristics (DM841)" is correct.
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