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Possibilities:

• Restart: re-initialize search whenever a local optimum
is encountered.
(Often rather ineffective due to cost of initialization.)

• Non-improving steps: in local optima, allow selection of
candidate solutions with equal or worse evaluation function value, e.g., using minimally
worsening steps.
(Can lead to long walks in plateaus, i.e., regions of
search positions with identical evaluation function.)

• Diversify the neighborhood

Note: None of these mechanisms is guaranteed to always
escape effectively from local optima.
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Diversification vs Intensification

• Goal-directed and randomized components of LS strategy need to be balanced carefully.

• Intensification: aims at greedily increasing solution quality, e.g., by exploiting the evaluation
function.

• Diversification: aims at preventing search stagnation, that is, the search process getting
trapped in confined regions.

Examples:
• Iterative Improvement (II): intensification strategy.
• Uninformed Random Walk/Picking (URW/P): diversification strategy.

Balanced combination of intensification and diversification mechanisms forms the basis for
advanced LS methods.
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Key idea: Best improvement = Iterative Improvement (or Hill Climber or Steepest Descent) +
Sideways Moves + seldom worsening moves

7



Randomized Local Search
Guided Local Search
Simulated Annealing
Iterated Local Search
Tabu Search
Variable Neighborhood Search

• GSAT begins with a rapid greedy descent towards a better truth assignment

• then long sequences of sideways moves take place. Sideways moves are moves that do not
increase or decrease the total number of unsatisfied clauses. They navigate through plateaux,
which is SAT are many and large

• GSAT [Selman et al. 1992] at its times was able to beat complete search algorithms (they
were not using CDC)
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Randomized Iterative Improvement
aka, Stochastic Hill Climbing

Key idea: Allowed worsening moves: In each search step, with a fixed probability
perform an uninformed random walk step instead of an iterative improvement step.
greedy + uniform random walk

Randomized Iterative Improvement (RII):
determine initial candidate solution s
while termination condition is not satisfied do

With probability wp:
choose a neighbor s ′ of s uniformly at random

Otherwise:
choose a neighbor s ′ of s such that f (s ′) < f (s) or,

if no such s ′ exists, choose s ′ such that f (s ′) is minimal
s := s ′

9



Randomized Local Search
Guided Local Search
Simulated Annealing
Iterated Local Search
Tabu Search
Variable Neighborhood Search

Example: Randomized Iterative Improvement for SAT
procedure RIISAT(F , wp, maxSteps)

input: a formula F , probability wp, integer maxSteps
output: a model φ for F or ∅
choose assignment φ for F uniformly at random;
steps := 0;
while not(φ is not proper) and (steps < maxSteps) do

with probability wp do
select x in X uniformly at random and flip;

otherwise
select x in X c uniformly at random from those that

maximally decrease number of clauses violated;
change φ;
steps := steps+1;

end
if φ is a model for F then return φ
else return ∅
end

end RIISAT

X c set of variables in violated clauses
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Note:

• No need to terminate search when local minimum is encountered

Instead: Impose limit on number of search steps or CPU time,
from beginning of search or after last improvement.

• Probabilistic mechanism permits arbitrary long sequences
of random walk steps

Therefore: When run sufficiently long, RII is guaranteed
to find (optimal) solution to any problem instance with
arbitrarily high probability.

• GWSAT [Selman et al., 1994],
was at some point state-of-the-art for SAT.
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Theorem
For any satisfiable formula and starting from any truth assignment, there exists a sequence of flips
using only variables from unsatisfied clauses such that one obtains a satisfying assignment.

Proof:

• fix a particular satisfying assignment σ̄.
• Let σ be any truth assignment.
• Every clause not satisfied by σ must contain a variable whose truth value is different in σ and
σ̄.

• Flipping such a variable in σ brings it one step closer to σ̄. (Note: it might have introduced
new violated clauses)

• Repeating this at most n times makes σ identical to σ̄, thereby turning σ into a satisfying
assignment.
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Example of slc heuristic: with prob. wp select a random move, with prob. 1− wp select the best
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Constraint Satisfaction Problem (CSP)

A CSP is a finite set of variables X , together with a finite set of constraints C , each on a subset of
X . A solution to a CSP is an assignment of a value d ∈ D(x) to each x ∈ X , such that all
constraints are satisfied simultaneously.

Constraint Optimization Problem (COP)

A COP is a CSP P defined on the variables x1, . . . , xn, together with an objective function
f : D(x1)× · · · ×D(xn)→ Q that assigns a value to each assignment of values to the variables. An
optimal solution to a minimization (maximization) COP is a solution d to P that minimizes
(maximizes) the value of f (d).

⇝ Constraints in a CSP can be relaxed and their violations determine the objective function.
This is the most common approach in LS
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var{int} queen[Size](m,Size) := distr.get ();

ConstraintSystem S(m);

S.post(alldifferent(queen ));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] - i));

int it = 0;
while (S.violations () > 0 && it < 50 * n) {

select(q in Size : S.violations(queen[q])>0) {
selectMin(v in Size)(S.getAssignDelta(queen[q],v)) {

queen[q] := v;
}
it = it + 1;

}
}
cout << queen << endl;
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• depth

• mobility

• coverage
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• Key Idea: Modify the evaluation function whenever
a local optimum is encountered.

• Associate weights (penalties) with solution components; these determine impact of
components on evaluation function value.

• Perform Iterative Improvement; when in local minimum, increase penalties of some solution
components until improving steps become available.

Guided Local Search (GLS):
determine initial candidate solution s
initialize penalties
while termination criterion is not satisfied do

compute modified evaluation function g ′ from g
based on penalties

perform subsidiary local search on s
using evaluation function g ′

update penalties based on s
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• Modified evaluation function:

g ′(s) := f (s) +
∑

i∈SC(s)

penalty(i),

where SC (s) is the set of solution components
used in candidate solution s.

• Penalty initialization: For all i : penalty(i) := 0.

• Penalty update in local minimum s: Typically involves penalty increase of some or all
solution components of s; often also occasional penalty decrease or penalty smoothing.

• Subsidiary local search: Often Iterative Improvement.
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Potential problem:
Solution components required for (optimal) solution may also be present in many local minima.

Possible solutions:
A: Occasional decreases/smoothing of penalties.
B: Only increase penalties of solution components that are

least likely to occur in (optimal) solutions.

Implementation of B: Only increase penalties of solution components i with maximal utility
[Voudouris and Tsang, 1995]:

util(s, i) :=
fi (s)

1 + penalty(i)

where fi (s) is the solution quality contribution of i in s.
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[Voudouris and Tsang 1995; 1999]
• Given: TSP instance π

• Search space: Hamiltonian cycles in π with n vertices;
• Neighborhood: 2-edge-exchange;

• Solution components edges of π;
fe(G , p) := w(e);

• Penalty initialization: Set all edge penalties to zero.

• Subsidiary local search: Iterative First Improvement.

• Penalty update: Increment penalties of all edges with maximal utility by

λ := 0.3 · w(s2-opt)

n

where s2-opt = 2-optimal tour.
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• Assign a positive weight to each clause

• attempt to minimize the sum of the weights of the unsatisfied clauses.

• The clause weights are dynamically modified (additively or multiplicatively) as the search
progresses, increasing the weight of the clauses that are currently unsatisfied.

• Depends on:
how often and by how much the weights of unsatisfied clauses are increased, and
how are all weights periodically decreased in order to prevent certain weights from becoming
dis-proportionately high.
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• Change the objective function bringing constraints gi into it

L(s⃗, λ⃗) = f (s⃗) +
∑
i

λigi (s⃗)

• λi are continous variables called Lagrangian Multipliers

• L(s⃗∗, λ) ≤ L(s⃗∗, λ⃗∗) ≤ L(s⃗, λ⃗∗)

• Alternate optimizations in s⃗ and in λ⃗
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let Ui (x) be a function that is 0 if Ci is satisfied by a solution x , and 1 otherwise.

minimize N(x) =
m∑
i=1

Ui (x)

s.t.Ui (x) = 0 ∀i ∈ {1, 2, . . . ,m}

Discrete Lagrangian Function:

Ld(x , λ) = N(x) +
m∑
i=1

λiUi (x)
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Key idea: Accept worsening steps with probability that depends
on respective deterioration in evaluation function value:
bigger deterioration ∼= smaller probability

Realization:
• Function p(f , s): determines probability distribution

over neighbors of s based on their values under
evaluation function f .

• Let step(s, s ′) := p(f , s, s ′).

Note:
• Behavior of PII crucially depends on choice of p.
• II and RII are special cases of PII.
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Example: Metropolis PII for the TSP

• Search space S : set of all Hamiltonian cycles in given graph G .
• Solution set: same as S

• Neighborhood relation N (s): 2-edge-exchange
• Initialization: an Hamiltonian cycle uniformly at random.
• Step function: implemented as 2-stage process:

1. select neighbor s ′ ∈ N(s) uniformly at random;
2. accept as new search position with probability:

p(T , s, s ′) :=

{
1 if f (s ′) ≤ f (s)

exp −(f (s′)−f (s))
T

otherwise

(Metropolis condition), where temperature parameter T controls likelihood of accepting
worsening steps.

• Termination: upon exceeding given bound on run-time.
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Inspired by statistical mechanics in matter physics:
• candidate solutions ∼= states of physical system
• evaluation function ∼= thermodynamic energy
• globally optimal solutions ∼= ground states
• parameter T ∼= physical temperature

Note: In physical process (e.g., annealing of metals), perfect ground states are achieved by very
slow lowering of temperature.
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Key idea: Vary temperature parameter, i.e., probability of accepting worsening moves, in
Probabilistic Iterative Improvement according to annealing schedule (aka cooling schedule).

Simulated Annealing (SA):
determine initial candidate solution s
set initial temperature T according to annealing schedule
while termination condition is not satisfied: do

while maintain same temperature T according to annealing schedule do
probabilistically choose a neighbor s ′ of s using proposal mechanism
if s ′ satisfies probabilistic acceptance criterion (depending on T ) then

s := s ′

update T according to annealing schedule
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• 2-stage step function based on
• proposal mechanism (often uniform random choice from N(s))
• acceptance criterion (often Metropolis condition)

• Annealing schedule
(function mapping run-time t onto temperature T (t)):

• initial temperature T0

(may depend on properties of given problem instance)
• temperature update scheme

(e.g., linear cooling: Ti+1 = T0(1 − i/Imax),
geometric cooling: Ti+1 = α · Ti )

• number of search steps to be performed at each temperature
(often multiple of neighborhood size)

• may be static or dynamic
• seek to balance moderate execution time with asymptotic behavior properties

• Termination predicate: often based on acceptance ratio,
i.e., ratio accepted / proposed steps or number of idle iterations
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Example: Simulated Annealing for TSP

Extension of previous PII algorithm for the TSP, with
• proposal mechanism: uniform random choice from

2-exchange neighborhood;
• acceptance criterion: Metropolis condition (always accept improving steps, accept worsening

steps with probability exp [−(f (s ′)− f (s))/T ]);
• annealing schedule: geometric cooling T := 0.95 ·T with n · (n− 1) steps at each temperature

(n = number of vertices in given graph), T0 chosen such that 97% of proposed steps are
accepted;

• termination: when for five successive temperature values no improvement in solution quality
and acceptance ratio < 2%.

Improvements:
• neighborhood pruning (e.g., candidate lists for TSP)
• greedy initialization (e.g., by using NNH for the TSP)
• low temperature starts (to prevent good initial candidate solutions from being too easily

destroyed by worsening steps)
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Key Idea: Use two types of LS steps:
• subsidiary local search steps for reaching

local optima as efficiently as possible (intensification)

• perturbation steps for effectively
escaping from local optima (diversification).

Also: Use acceptance criterion to control diversification vs intensification behavior.
Iterated Local Search (ILS):
determine initial candidate solution s
perform subsidiary local search on s
while termination criterion is not satisfied do

r := s
perform perturbation on s
perform subsidiary local search on s
based on acceptance criterion,

keep s or revert to s := r
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Note:

• Subsidiary local search results in a local minimum.

• ILS trajectories can be seen as walks in the space of
local minima of the given evaluation function.

• Perturbation phase and acceptance criterion may use aspects of search history (i.e., limited
memory).

• In a high-performance ILS algorithm, subsidiary local search, perturbation mechanism and
acceptance criterion need to complement each other well.

41



Randomized Local Search
Guided Local Search
Simulated Annealing
Iterated Local Search
Tabu Search
Variable Neighborhood SearchComponents

Subsidiary local search: (1)

• More effective subsidiary local search procedures lead to better ILS performance.
Example: 2-opt vs 3-opt vs LK for TSP.

• Often, subsidiary local search = iterative improvement,
but more sophisticated LS methods can be used.
(e.g., Tabu Search).
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Perturbation mechanism: (1)

• Needs to be chosen such that its effect cannot be easily undone by subsequent local search
phase.
(Often achieved by search steps larger neighborhood.)
Example: local search = 3-opt, perturbation = 4-exchange steps in ILS for TSP.

• A perturbation phase may consist of one or more
perturbation steps.

• Weak perturbation ⇒ short subsequent local search phase;
but: risk of revisiting current local minimum.

• Strong perturbation ⇒ more effective escape from local minima;
but: may have similar drawbacks as random restart.

• Advanced ILS algorithms may change nature and/or strength of perturbation adaptively during
search.
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Acceptance criteria: (1)

• Always accept the best of the two candidate solutions

⇒ ILS performs Iterative Improvement in the space of local optima reached by subsidiary local
search.

• Always accept the most recent of the two candidate solutions

⇒ ILS performs random walk in the space of local optima reached by subsidiary local search.

• Intermediate behavior: select between the two candidate solutions based on the Metropolis
criterion (e.g., used in Large Step Markov Chains [Martin et al., 1991].

• Advanced acceptance criteria take into account search history,
e.g., by occasionally reverting to incumbent solution.
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Example: Iterated Local Search for the TSP (1)
• Given: TSP instance π.
• Search space: Hamiltonian cycles in π.
• Subsidiary local search: Lin-Kernighan variable depth search algorithm
• Perturbation mechanism:

‘double-bridge move’ = particular 4-exchange step:

A

BC

D

double bridge 

move

A

BC

D

• Acceptance criterion: Always return the best of the two given candidate round trips.
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Key idea: Avoid repeating history (memory)
How can we remember the history without

• memorizing full solutions (space)

• computing hash functions (time)

⇝ use attributes
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Key idea: Use aspects of search history (memory) to escape from local minima.

• Associate tabu attributes with candidate solutions or
solution components.

• Forbid steps to search positions recently visited by
underlying iterative best improvement procedure based on
tabu attributes.

Tabu Search (TS):
determine initial candidate solution s
While termination criterion is not satisfied:
|| determine set N ′ of non-tabu neighbors of s
|| choose a best candidate solution s ′ in N ′

|||| update tabu attributes based on s ′

⌊ s := s ′
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• Search space: set of all complete assignments of X .

• Solution set: assignments that satisfy all constraints

• Neighborhood relation: one exchange

• Memory: Associate tabu status (Boolean value) with each pair (variable,value) (x , val).

• Initialization: a random assignment

• Search steps:
• pairs (x , v) are tabu if they have been changed in the last tt steps;
• neighboring assignments are admissible if they can be reached by changing a non-tabu pair

or have fewer unsatisfied constraints than the best assignments seen so far (aspiration criterion);
• choose uniformly at random admissible neighbors with minimal number of unsatisfied constraints.

• Termination: upon finding a feasible assignment or
after given bound on number of search steps has been reached or
after a number of idle iterations
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Note:

• Admissible neighbors of s: Non-tabu search positions in N(s)

• Tabu tenure: a fixed number of subsequent search steps
for which the last search position
or the solution components just added/removed from it
are declared tabu

• Aspiration criterion (often used): specifies conditions under which
tabu status may be overridden (e.g., if considered step leads to improvement in incumbent
solution).

• Crucial for efficient implementation:
• efficient best improvement local search
⇝ pruning, delta updates, (auxiliary) data structures

• efficient determination of tabu status:
store for each variable x the number of the search step
when its value was last changed itx ; x is tabu if
it − itx < tt, where it = current search step number.
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Design choices:

• Neighborhood exploration:

• no reduction
• min-conflict heuristic

• Prohibition power for move = <x,new_v,old_v>

• <x,-,->
• <x,-,old_v>
• <x,new_v,old_v>, <x,old_v,new_v>

• Tabu list dynamics:

• Interval: tt ∈ [tb, tb + w ]

• Adaptive: tt = ⌊α · c⌋+ RandU(0, tb)
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Variable Neighborhood Search is a method based on the systematic change of the neighborhood
during the search.

Central observations
• a local minimum w.r.t. one neighborhood function is not necessarily locally minimal w.r.t.

another neighborhood function
• a global optimum is locally optimal w.r.t. all neighborhood functions
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• Several adaptations of this central principle

• (Basic) Variable Neighborhood Descent (VND)

• Variable Neighborhood Search (VNS)

• Reduced Variable Neighborhood Search (RVNS)

• Variable Neighborhood Decomposition Search (VNDS)

• Skewed Variable Neighborhood Search (SVNS)

• Notation

• Nk , k = 1, 2, . . . , km is a set of neighborhood functions

• Nk(s) is the set of solutions in the k-th neighborhood of s
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How to generate the various neighborhood functions?

• for many problems different neighborhood functions (local searches) exist / are in use
• change parameters of existing local search algorithms
• use k-exchange neighborhoods; these can be naturally extended
• many neighborhood functions are associated with distance measures; in this case increase the

distance
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Procedure BVND
input : Nk , k = 1, 2, . . . , kmax , and an initial solution s
output: a local optimum s for Nk , k = 1, 2, . . . , kmax

k ← 1
repeat

s ′ ← FindBestNeighbor(s,Nk)
if f (s ′) < f (s) then

s ← s ′

(k ← 1)
else

k ← k + 1
until k = kmax ;
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Procedure VND
input : Nk , k = 1, 2, . . . , kmax , and an initial solution s
output: a local optimum s for Nk , k = 1, 2, . . . , kmax

k ← 1
repeat

s ′ ← IterativeImprovement(s,Nk)
if f (s ′) < f (s) then

s ← s ′

k ← 1
else

k ← k + 1
until k = kmax ;
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• Final solution is locally optimal w.r.t. all neighborhoods

• First improvement may be applied instead of best improvement

• Typically, order neighborhoods from smallest to largest

• If iterative improvement algorithms IIk , k = 1, . . . , kmax

are available as black-box procedures:
• order black-boxes
• apply them in the given order
• possibly iterate starting from the first one
• order chosen by: solution quality and speed
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Procedure BVNS
input : Nk , k = 1, 2, . . . , kmax , and an initial solution s
output: a local optimum s for Nk , k = 1, 2, . . . , kmax

repeat
k ← 1
repeat

s ′ ← RandomPicking(s,Nk)
s ′′ ← IterativeImprovement(s ′,Nk)
if f (s ′′) < f (s) then

s ← s ′′

k ← 1
else

k ← k + 1
until k = kmax ;

until Termination Condition;
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To decide:
• which neighborhoods
• how many
• which order
• which change strategy

• Extended version: parameters kmin and kstep; set k ← kmin and increase by kstep if no better
solution is found (achieves diversification)
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