
DM841

Discrete Optimization

Satisfiability
Incomplete Algorithms

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Outline

1. Local Search for SAT

2



Maximum Weighted Satisfiability

Notation:

• 0-1 variables xj , j ∈ N = {1, 2, . . . , n},

• clauses Ci , i ∈ M = {1, 2, . . . ,m}, and weights wi (≥ 0), i ∈ M

• x̄j = 1 − xj

• L =
⋃

j∈N{xj , x̄j} set of literals

• Ci ⊆ L for i ∈ M (e.g., Ci = {x1, x̄3, x8}).

• Task: maxx∈{0,1}n

∑
{wi | i ∈ M and Ci is satisfied in x}

1 devise preprocessing rules, ie, polynomial time simplification rules
2 design one or more construction heuristics for the problem
3 design one or more local search for the problem

4



Pre-processing

Pre-processing rules: low polynimial time procedures to decrease the size of the problem instance.

Typically applied repeatedly until fixed point when no rule is effective anymore.

5



Examples in SAT

1 eliminate duplicate literals
2 eliminate tautologies: x1 ∨ ¬x1...

3 eliminate subsumed clauses
4 eliminate clauses with pure literals
5 eliminate unit clauses
6 unit resolution/propagation
7 probing (existential quantification for each variable)

6



Simple data structure for unit propagation

7



Local Search: Decision vs Minimization

LS-Decision(π)
input: problem instance π ∈ Π
output: solution x ∈ S ′(π) or ∅
(x) := init(π)

while not terminate(π, x) do
(x) := step(π, x)

if x ∈ S ′(π) then
return x

else
return ∅

LS-Minimization(π′)
input: problem instance π′ ∈ Π′

output: solution x ∈ S ′(π′) or ∅
(x) := init(π′);
xb := x ;
while not terminate(π′, x) do

(x) := step(π′, x);
if f (π′, x) < f (π′, xb) then

xb := x ;

if xb ∈ S ′(π′) then
return xb

else
return ∅

• Assignment: x ∈ {0, 1}n

• Evaluation function: f (x) = # unsatisfied clauses (assume
wi = 1)

• Neighborhood: one-flip
• Step rule: best neighbor

8



Naive approach: exahustive neighborhood examination in O(nmk) (k size of largest Ci )
A better approach:

• C(xj) = {i ∈ M | xj ∈ Ci} (i.e., clauses dependent on xj)
• L(xj) = {ℓ ∈ N | ∃i ∈ M with xℓ ∈ Ci and xj ∈ Ci}
• f (x) = # unsatisfied clauses
• ∆(xj) = f (x′)− f (x), x′ = δ

xj
1E (x) (aka score of xj)

Initialize:
• compute f , score of each variable, and list unsat clauses in O(mk)

• init C(xj) for all variables

Examine Neighborhood
• choose the var with best score

Update:
• change the score of variables affected, that is, look in C(·) O(mk)



C (xj) Data Structure

10



Even better approach (though same asymptotic complexity):
⇝ after the flip of xj only the score of variables in L(xj) that critically depend on xj actually changes

• Clause Ci is critically satisfied by a variable xj in x iff:
• xj is in Ci

• Ci is satisfied in x and flipping xj makes Ci unsatisfied
(e.g., 1 ∨0 ∨ 0 but not 1 ∨1 ∨ 0)

Keep a list of such clauses for each var

• xj is critically dependent on xℓ under x iff:
there exists Ci ∈ C(xj) ∩ C(xℓ) and such that flipping xj :

• Ci changes from satisfied to not satisfied or viceversa
• Ci changes from satisfied to critically satisfied by xℓ or viceversa

Initialize:
• compute score of variables;
• init C(xj) for all variables
• init status criticality for each clause (ie, count # of ones per clause)

Update:
change sign to score of xj
for all Ci in C(xj) where critically dependent vars are do

for all xℓ ∈ Ci do
update score xℓ depending on its critical status before flipping xj



Summary

1. Local Search for SAT

12


	Local Search for SAT

