DM841 Discrete Optimization

Satisfiability Incomplete Algorithms

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Local Search for SAT

Maximum Weighted Satisfiability

Notation:

- 0-1 variables x_j , $j \in N = \{1, 2, ..., n\}$,
- clauses C_i , $i \in M = \{1, 2, \dots, m\}$, and weights $w_i \ (\geq 0)$, $i \in M$
- $\bar{x}_j = 1 x_j$
- $L = \bigcup_{j \in N} \{x_j, \bar{x}_j\}$ set of literals
- $C_i \subseteq L$ for $i \in M$ (e.g., $C_i = \{x_1, \overline{x_3}, x_8\}$).
- Task: $\max_{x \in \{0,1\}^n} \sum \{w_i \mid i \in M \text{ and } C_i \text{ is satisfied in } x\}$

① devise preprocessing rules, ie, polynomial time simplification rules

- $\ensuremath{\textcircled{O}}$ design one or more construction heuristics for the problem
- (3) design one or more local search for the problem

Pre-processing

Pre-processing rules: low polynimial time procedures to decrease the size of the problem instance.

Typically applied repeatedly until fixed point when no rule is effective anymore.

Examples in SAT

- eliminate duplicate literals
- **2** eliminate tautologies: $x_1 \vee \neg x_1...$
- eliminate subsumed clauses
- Ø eliminate clauses with pure literals
- eliminate unit clauses
- 6 unit resolution/propagation
- probing (existential quantification for each variable)

Simple data structure for unit propagation

Local Search: Decision vs Minimization

LS-Decision(π) input: problem instance $\pi \in \Pi$ output: solution $x \in S'(\pi)$ or \emptyset $(x) := init(\pi)$

while not terminate (π, \mathbf{x}) do $(x) := \operatorname{step}(\pi, \mathbf{x})$

if $x \in S'(\pi)$ then return x else return \emptyset LS-Minimization(π') **input:** problem instance $\pi' \in \Pi'$ **output:** solution $x \in S'(\pi')$ or \emptyset $(x) := init(\pi')$: $x_h := x$: while not terminate(π', \mathbf{x}) do $(x) := \operatorname{step}(\pi', \mathbf{x});$ if $f(\pi', x) < f(\pi', x_b)$ then $\sum_{x_b := x_i} x_b := x_i$ if $x_b \in S'(\pi')$ then return Xh else 📔 return 🖉

- Assignment: $x \in \{0, 1\}^n$
- Evaluation function: f(x) = # unsatisfied clauses (assume w_i = 1)
- Neighborhood: one-flip
- Step rule: best neighbor

Naive approach: exahustive neighborhood examination in O(nmk) (k size of largest C_i) A better approach:

- $C(x_j) = \{i \in M \mid x_j \in C_i\}$ (i.e., clauses dependent on x_j)
- $L(x_j) = \{\ell \in N \mid \exists i \in M \text{ with } x_\ell \in C_i \text{ and } x_j \in C_i\}$
- f(x) = # unsatisfied clauses
- $\Delta(x_j) = f(x') f(x), \qquad x' = \delta_{1E}^{x_j}(x)$ (aka score of x_j)

Initialize:

- compute f, score of each variable, and list unsat clauses in O(mk)
- init $C(x_j)$ for all variables

Examine Neighborhood

• choose the var with best score

Update:

• change the score of variables affected, that is, look in $C(\cdot) O(mk)$

Even better approach (though same asymptotic complexity): \rightarrow after the flip of x_i only the score of variables in $L(x_i)$ that critically depend on x_i actually changes

- Clause C_i is critically satisfied by a variable x_j in x iff:
 - x_j is in C_i
 - C_i is satisfied in × and flipping x_j makes C_i unsatisfied (e.g., 1 ∨0 ∨ 0 but not 1 ∨1 ∨ 0)

Keep a list of such clauses for each var

- x_j is critically dependent on x_ℓ under × iff: there exists C_i ∈ C(x_j) ∩ C(x_ℓ) and such that flipping x_j:
 - C_i changes from satisfied to not satisfied or viceversa
 - C_i changes from satisfied to critically satisfied by x_ℓ or viceversa

Initialize:

- compute score of variables;
- init $C(x_j)$ for all variables
- init status criticality for each clause (ie, count # of ones per clause)

Update:

```
change sign to score of x_j
for all C_i in C(x_j) where critically dependent vars are do
for all x_\ell \in C_i do
update score x_\ell depending on its critical status before flipping x_i
```


1. Local Search for SAT