
DM841

Discrete Optimization

Solvers

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Problem solving strategies

The choice of solution strategy depends on the nature and type of the optimization problem at
hand, but also on how much information about the problem is available to the solver:

Glass box
The mathematical formulation of the problem is fully available to, and can be directly manipulated
by, the solver. The simplex method and most mixed integer-linear and constraint programming
solvers are of this type

Black box
The mathematical formulation of the problem is not available to the solver, which is restricted to
evaluating the objective function at discrete points in the solution space. Higher-order black-box
methods involve evaluating objective function derivatives at given solutions, as well.

2



Outline

1. Software Tools
Constraint-Based Local Search with Comet™
LocalSolver
Easy Local

3



Software Tools

• Modeling languages
interpreted languages with a precise syntax and semantics

• Software libraries
collections of subprograms used to develop software

• Software frameworks
set of abstract classes and their interactions

• frozen spots (remain unchanged in any instantiation of the framework)
• hot spots (parts where programmers add their own code)

4



Software Tools

No well established software tools for Local Search:
• the apparent simplicity of Local Search induces to build applications from scratch.

• model and search are more interdependent than in CP and MILP: ie, constraints must be
relaxed and this is hard to automatize

• the freedom of problem characteristics that can be tackled

• crucial roles played by delta/incremental updates which are highly problem dependent

• the development of Local Search is in part a craft,
beside engineering and science. Very little if nothing has general validity

• However some attempts: Comet, LocalSolver, OscaR-CBLS

5



Software Tools

EasyLocal++ C++ Local Search
ParadisEO C++ Local Search, Evolutionary Algorithm
OpenTS Java Tabu Search
Comet Language
LocalSolver Modelling Language
Google OR Tools Libraries
OscaR-CBLS Modelling Language

EasyLocal++ http://tabu.diegm.uniud.it/EasyLocal++/
ParadisEO http://paradiseo.gforge.inria.fr
OpenTS http://www.coin-or.org/Ots
Comet http://dynadec.com/
LocalSolver http://www.localsolver.com/
Google OR Tools https://code.google.com/p/or-tools/
OscaR-CBLS http://oscarlib.bitbucket.org/cbls.html

6

http://tabu.diegm.uniud.it/EasyLocal++/
http://paradiseo.gforge.inria.fr
http://www.coin-or.org/Ots
http://dynadec.com/
http://www.localsolver.com/
https://code.google.com/p/or-tools/
http://oscarlib.bitbucket.org/cbls.html


Comet was

Not Open Source

Developed by Pascal Van Hentenryck (Brown University), Laurent Michel (University of
Connecticut), then owned by Dynadec.

It is not anymore in active development and available

11



Constraint-Based Local Search is

• Model
• Incremental variables
• Invariants (one-way constraints)
• Differentiable objects

• Functions
• Constraints
• Constraint Systems

• Search
• Local Search

• Iterative Improvement
• Tabu Search
• Simulated Annealing
• Guided Local Search

OscaR has further developed the concept and architecture.

13



Incremental variables

• var{int}, var{float}, var{bool}, var{set{int}}, ...
• Attached to a model object
• Has a domain
• Has a value

Examples
Solver<LS> m();

var{int} x(m, 1..100);
var{bool} b[1..7](m);
var{set{int}} S(m);

x := 7;
S := {1,3,6,8};

17



Invariants

• var <- expr
• Also known as one-way constraints
• Defined over incremental variables
• Implicitly attached to a model object
• LHS variable value is maintained incrementally under changes to RHS variable values
• Can be user defined (by implementing Invariant<LS>)

Examples
var{int} x(m) := 7
var{int} y(m) <- (x+5)*x;
x <- y; // not allowed!!!
y := 3; // not allowed!!!
var{int} c[i in 1..n](m) := (i % 6);
var{int} C(m) <- sum(i in 1..n)(c[i]);
var{set{int}} Z(m) <- collect(i in n : c[i] == 0)(i);
var{int} q(m) <- c[x];

18



Diffentiable objects

• Constraint<LS>
• ConstraintSystem<LS>
• Function<LS>

• Defined over incremental variables
• Implicitly attached to a model object
• Has a value (or a number of violations)
• Maintains value incrementally under changes to variable values
• Supports delta evaluations
• Can be user defined (by extending UserConstraint<LS> or )

19



Constraint<LS>

Interface
var{int}[] getVariables()
var{boolean} isTrue()
var{int} violations()
var{int} violations(var{int} x)
int getAssignDelta(var{int} x, int v)
int getAssignDelta(var{int}[] x, int[] v)
int getSwapDelta(var{int} x1, var{int} x2)

20



ConstraintSystem<LS> extends Constraint<LS>

A conjunction of constraints

Interface
Constraint<LS> post(expr{boolean})
Constraint<LS> post(expr{boolean},int)
Constraint<LS> post(Constraint<LS>)
Constraint<LS> post(Constraint<LS>,int)
Constraint<LS> satisfy(expr{boolean})
Constraint<LS> satisfy(expr{boolean},int)
Constraint<LS> satisfy(Constraint<LS>)
Constraint<LS> satisfy(Constraint<LS>,int)

21



ConstraintSystem<LS> extends Constraint<LS>

Examples
Solver<LS> m();
var{int} x[1..10](m);
var{int} y[1..10](m, 1..2);
int w[i in 1..10] = 2*i;
int C[1..2] = 95;

ConstraintSystem<LS> S(m);
S.post(x[1] >= 7);
S.post(sum(i in 3..7)(x[i]*x[i] <= x[10]);
S.post(AllDifferent<LS>(x));
S.post(Knapsack<LS>(y, w, C));

22



Function<LS>

Interface
var{int}[] getVariables()
var{int} evaluation()
var{int} value()
int getAssignDelta(var{int} x, int v)
int getSwapDelta(var{int} x1, var{int} x2)
var{int} flipDelta(var{boolean} x)
var{int} increase(var{int} x)
var{int} decrease(var{int} x)

23



Function<LS>

Examples
Solver<LS> m();

var{int} x(m, 1..10);

FunctionWrapper<LS> f1(x[1]*(7-x[2]);
FunctionWrapper<LS> f2(x[5]);
FunctionPower<LS> f3(f2, 3);
FunctionTimes<LS> f4(f2, f3);
FunctionSum<LS> f5(m);
F.post(f1);
F.post(f2);
F.post(f3, 17);
F.post(x[10]-10);
F.close();
MinNbDistinct<LS> f6(x);

24



Overview

25



OscaR-CBLS

The only system really open [?]

Based on Constraint-based local search by Van Hentenryck and Michel.

Constraint classification:

1 Implicit constraints: AllDifferent, GlobalCardinality with non-variable cardinalities,
LinearEquality with unit coefficients, Circuit and Subcircuit.

2 One-way constraints defining invariants

3 Soft constraints

Dependency graph:
one-way constraints are topologically sorted based on the following digraph: each invariant is a
node; there is an edge from a variable a to another variable b if a defines b via a one-way constraint

26



First general local search solver with a backend for MiniZinc.
An example for the N-queens problem:

27



Neighborhoods
Neighborhoods are defined on independent variables only (roots of the dependency graph).
Invariants are not handled by neighborhoods.
General purpose neighborhoods:
Binary variables:

• flip
• swap

Integer variables:
• one-exchange
• reassignment of a independent integer

variable to another value in its domain
Constraint specific neighborhoods

• AllDifferent: swap between the values of two variables; reassignment of a variable to an
unused value.

• GlobalCardinality: swap between the values of two variables; reassignment of a variable so that
all cardinalities are satisfied

• Circuit: removal of one vertex from the circuit and insertion at some other point.
• Subcircuit: Circuit + removals without corresponding insertion; insertions of previously

removed vertices
• LinearEquality: the value of one variable is decreased by some amount and the value of

another variable is increased by the same amount
28



Search Procedure

• randomised initial assignment.

• neighbourhoods do not return all possible moves to the search procedure but are queried for a
(random) best move

• Iterative improvement on general purpose neighborhoods: aims at minimising the global
violation. Choose a variable and reassign to it the value that leads to the smallest global
violation

• Tabu Search for satisfaction: objective function is neglected

• Tabu Search for optimization: ev. function: w1 · v + w2 · f , w1,w2 ∈ Z+.
• initially w1 = w2 = 1
• w1 is is increased if the global violation is positive (i.e., there remain unsatisfied constraints) for

a large number of iterations
• w2 is increased if the global violation is zero (i.e., all constraints are satisfied) but no better

solution is found for a large number of iterations
29



Local Search Modelling Language
Enriched mathematical programming formulation:

• Boolean variables (0–1 programming)
• constraints (always satisfied) - decision between soft and hard left to user
• invariants
• objectives (lexicographics ordering)

Example (Bin-packing problem)

Input 3 items x , y , z of height 2,3,4 to pack into 2 piles A,B with B already containing an item of
height 5.
Task Minimize height of largest pile

xA <- bool (); yA <- bool (); zA <- bool ();
xB <- bool (); yB <- bool (); zB <- bool ();
constraint booleansum(xA , xB) = 1;
constraint booleansum(yA , yB) = 1;
constraint booleansum(zA , zB) = 1;
heightA <- sum(2xA, 3yA, 4zA);
heightB <- sum(2xB, 3yB, 4zB , 5);
objective <- max(heightA , heightB );
minimize objective;

31



Black-Box Local Search Solver

• initial solution: randomized greedy algorithm (constraints satisfied)

• search strategy (standard descent, ie, iterative improvement + simulated annealing + random
restart via multithreading)

• moves
specialized for constraints and feasibility

• incremental evaluation machinery
problem represented as a DAG: variables are roots, objectives leaves, operators induce inner
nodes
bredth-first search in DAG.

32



Local Solver

Example (Graph Coloring)

/* Declares the optimization model. */
function model (){

x[1..n][1..k] <- bool ();
y[1..k] <- bool ();

// Assign color
for[i in 1..n]

constraint sum[l in 1..k](x[i][l]) == 1;

for[c in 1..m][l in 1..k]
constraint sum[i in 1..v[c][0]](x[v[c][i]][l]) <= 1;

y[l in 1..k] <- max[i in 1..n](x[i][l]);

// Clique constraint
obj <- sum[l in 1..k](y[l]);
minimize obj;

}

33



Local Solver

/* Parameterizes the solver. */
function param (){

if(lsTimeLimit == nil)
lsTimeLimit =600;

lsTimeBetweenDisplays = 10;
lsNbThreads = 4;
lsAnnealingLevel = 5;

}

/* Writes the solution in a file following the following format:
* each line contains a vertex number and its subset (1 for S, 0 for V-S) */

function output (){
println("Write solution into file ’sol.txt ’");
solFile = openWrite("sol.txt");
for [i in 1..n][l in 1..k]{

if (getValue(x[i][l]) == true)
println(solFile , i, " ", l);

}
}

34



Black Box Approach

• Problem modelling fully separated from black-box solver specification

• End users oblivious to the inner workings of the solvers

• Underlying modelling paradigm, training

• Built-in performance features

• The same model for many solvers

• Solvers transparently operate on all problems of the appropriate type. How?

36



References

37


	Software Tools
	Constraint-Based Local Search with Comet™
	LocalSolver
	Easy Local


