DM841
 Discrete Optimization - Heuristics

Construction Heuristics for
 Traveling Salesman Problem

Marco Chiarandini
Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

\author{

1. Travelling Salesman Problem
}
2. Solution Approaches
3. TSP
4. Code Speed Up

Outline

\author{

1. Travelling Salesman Problem
}
2. Solution Approaches
3. TSP
4. Code Speed Up

Traveling Salesman Problem

Traveling Salesman Problem

Given: a weighted complete graph
Output: an Hamiltonian cycle of minimum total weight.

- http://www.math.uwaterloo.ca/tsp/
- "platform for the study of general methods that can be applied to a wide range of discrete optimization problems"
- arranging school bus routes to pick up the children in a school district.
- scheduling of service calls at cable firms
- delivery of meals to homebound persons
- scheduling of stacker cranes in warehouses
- scheduling of a machine to drill holes in a circuit board or other object
- routing of trucks for parcel post pickup

General vs Instance

General problem vs problem instance:

General problem \mathcal{P} :

- Given any set of points X in a square, find a shortest Hamiltonian cycle
- Solution: Algorithm that finds shortest Hamiltonian cycle for any X

Problem instantiation π :

- Given a specific set of points π in the square, find a shortest Hamiltonian cycle
- Solution: Shortest Hamiltonian cycle for π

Problems can be formalized on sets of problem instances Π (instance classes)

Traveling Salesman Problem

Types of TSP instances:

- Complete vs incomplete graphs
- Symmetric: For all edges $u v$ of the given graph $G, v u$ is also in G, and $w_{u v}=w_{v u}$. Otherwise: asymmetric.
- Metric TSP: symmetric + triangle inequality $\left(w_{i j} \leq w_{i k}+w_{k j}\right)$
- Euclidean: Vertices $=$ points in an Euclidean space, weight function $=$ Euclidean distance metric.
- Geographic (metric TSP): Vertices = points on a sphere, weight function $=$ geographic (great circle) distance.

Alternatively, these features can become part of the general problem description and exploited in the development of the solution algorithm

TSP: Benchmark Instances

Instance classes

- Real-life applications (geographic, VLSI)
- Random Euclidean
- Random Clustered Euclidean
- Random Distance

Available at the TSPLIB (more than 100 instances upto 85.900 cities) and at the 8th DIMACS challenge

TSP: Instance Examples

Complete Algorithms and Lower Bounds

- Branch \& cut algorithms (Concorde: http://www.math. uwaterloo.ca/tsp/concorde)
- cutting planes + branching
- use LP-relaxation for lower bounding schemes
- effective heuristics for upper bounds

Solution times with Concorde		
Instance	Computing nodes	CPU time (secs)
att532	7	109.52
rat783	1	37.88
pcb1173	19	468.27
fl1577	7	6705.04
d2105	169	11179253.91
pr2392	1	116.86
rl5934	205	588936.85
usa13509	9539	ca. 4 years
d15112	164569	ca. 22 years
s24978	167263	84.8 CPU years

- Lower bounds: (within less than one percent of optimum for random Euclidean, up to two percent for TSPLIB instances)

Outline

1. Travelling Salesman Problem
2. Solution Approaches
3. TSP
4. Code Speed Up

Good way to start approaching a problem:

- Make a small example and a drawing of the problem
- Represent a solution: decision variables, data structures.

For the TSP: permutation as array of all different values corresponds to cycle notation, alternative notation: Cauchy's notation or (node images)

- Enumerate all possible solutions and determine the optimal solution
- For TSP: solution representation is a permutation of vertices, construct all possible permutations by, for example, tree search.
Consider which parts of the tree can be spared.
- Rotating permuations: keep starting node fixed
- Symmetric permuations

Overall complexity $O((n-1)!/ 2)$

Held Karp Algorithm: Dynamic Programming

- Consider the problem as a multistage decision problem.
- fix the origin at some city, say 0 (wlog).
- Suppose that at a certain stage of an optimal tour starting at 0 one has reached a city i and there remain k cities $j_{1}, j_{2}, \ldots, j_{k}$ to be visited before returning to 0 .
- Principle of Optimality for the tour being optimal, the path from i through $j_{1}, j_{2}, \ldots, j_{k}$ in some order and then to 0 must be of minimum length (if not the entire tour could not be optimal, since its total length could be reduced by choosing a shorter path from i through $j_{1}, j_{2}, \ldots, j_{k}$ to 0$)$.
- $f\left(i ;\left\{j_{1}, j_{2}, \ldots, j_{k}\right\} ; 0\right)$ length of a path of minimal length from i to 0 which passes exactly once through each of the remaining k unvisited cities $j_{1}, j_{2}, \ldots, j_{k}$
- $f\left(0 ;\left\{j_{1}, j_{2}, \ldots, j_{n}\right\} ; 0\right)$ is the solution to the problem
- Recursive relation

$$
f\left(i ;\left\{j_{1}, j_{2}, \ldots, j_{k}\right\} ; 0\right)=\min _{1 \leq m \leq k}\left\{d_{i j_{m}}+f\left(j_{m} ;\left\{j_{1}, j_{2}, \ldots, j_{m-1}, j_{m+1}, \ldots, j_{k}\right\} ; 0\right)\right\}
$$

- $f(i ;\{j\} ; 0)=d_{i j}+d_{j 0}$
- $f\left(i ;\left\{j_{1}, j_{2}\right\} ; 0\right)=\min _{j_{1}, j_{2}}\left\{d_{i j_{1}}+f\left(j_{1} ;\left\{j_{2}\right\} ; 0\right), d_{i j_{2}}+f\left(j_{2} ;\left\{j_{1}\right\} ; 0\right)\right\}$
- $n 2^{n}$ values $f\left(i ; j_{1}, j_{2}, \ldots, j_{k} ; 0\right)$; to calculate
each value costs up to n operations if previous values available Overall time complexity: $O\left(n^{2} 2^{n}\right)$; memory usage $O\left(n 2^{n}\right)$.
- This is a backward implementation. See wikipedia for a forward implementation and a numerical example

Outline

1. Travelling Salesman Problem

2. Solution Approaches
3. TSP
4. Code Speed Up

Construction heuristics specific for TSP

- Heuristics that Grow Fragments
- Nearest neighborhood heuristics
- Double-Ended Nearest Neighbor heuristic
- Multiple Fragment heuristic (aka, greedy heuristic)
- Heuristics that Grow Tours
- Nearest Addition
- Farthest Addition
- Random Addition
- Nearest Insertion
- Farthest Insertion
- Random Insertion
- Clarke-Wright savings heuristic
- Heuristics based on Trees
- Minimum spanning tree heuristic
- Christofides' heuristics
- Fast recursive partitioning heuristic

Code Speed Up

Heuristics that grow fragments

Nearest Neighbor Heuristic

Figure 1. The Nearest Neighbor heuristic.
NN (Flood, 1956)
(1) Randomly select a starting node
(2) Add to the last node the closest node until no more nodes are available
(3) Connect the last node with the first node

Running time $O\left(N^{2}\right)$

Nearest Neighbor Heuristic

Figure 1. The Nearest Neighbor heuristic.

- In geometric instances: $N N<\frac{(\lceil\log N\rceil+1)}{2} \cdot O P T$
- Double-Ended NN

Nearest Neighbor Heuristic

Build(PtSet)
Perm[1]:=StartPt
DeletePt(Perm[1])
for $\mathrm{i}:=2$ to N do
Perm[$[1]:=N N(\operatorname{Perm}[i-1])$
DeletePt(Perm[i])

- Construction in $O(n \log n)$ time and $O(n)$ space
- Range search: reports the leaves from a split node.
- Delete(PointNum) amortized constant time
- NearestNeighbor (PointNum) bottom-up search
visit nodes + compute distances
$A+B N^{C}, A>0, B<0,-1<C<0$ (expected constant time) if no deletions happened and data uniform
- FixedRadiusNearestNeighbor(PointNum, Radius, function)
- BallSearch(PointNum, function) ball centered at point
- SetRadius(PointNum, float Radius)
- SphereOfInfluence(PointNum, float Radius) ball centered at point with given radius

Figure 5. The Multiple Fragment heuristic.

Figure 5. The Multiple Fragment heuristic.

- Add the cheapest edge provided it does not create a cycle.
- $O(\sqrt{N})$ approximation

Greedy Heuristic: Implementation Details

- Array Degree num. of tour edges
- K-d tree for nearest neighbor searching (only eligible nodes)
- Array NNLink containing index to nearest neighbor of i not in the fragment of i
- Priority queue (heap) with nearest neighbor links
- Array Tail link to the other tail of current fragments.

Important Elements

- Exploit the locality inherent in the problem to solve it (NN search, Fixed-radius search, ball search)
- Search time modelled by a function $A+B N^{C}$
- Number of searches
- Priority queue of links to nearest neighbors

Heuristics that grow tours

Cross product of	Variable selection	Value selection Expansion rule
	Nearest	Addition
	Farthest	Insertion
	Random	

Addition Heuristics

Figure 8. The Nearest Addition heuristic.
NA
(1) Select a node and its closest node and build a tour of two nodes
(2) Insert in the tour the closest node v until no more node are available

Tour maintained as a double lined list
Running time $O\left(N^{3}\right)$

Addition Heuristics

Figure 11. The Farthest Addition heuristic.
FA
(1) Select a node and its farthest and build a tour of two nodes
(2) Insert in the tour the farthest node v until no more node are available

FA is more effective than NA because the first few farthest points sketch a broad outline of the tour that is refined after.
Running time $O\left(N^{3}\right)$

Motivation:

- A and B are far from Y relative to the distance from Y 's nearest neighbor
- Y is near to A relative to the length of the edge $A B$.

Nearest Neighbor-ball at a point Y with scale S is a ball centered at Y with radius S times the distance from Y to its nearest neighbor among the points in the tour (eg, $D(Y, C)$).
Sphere of influence at tour vertex A with scale S is a ball centered at A with radius S times the length of the longer edge adjacent to $A(\mathrm{eg}, D(A, B)$).

Theorem

Y not yet in tour
C nearest neighbor of Y
D neighbor of C in tour that minimize $C(Y, C D)$
There exists an edge $A B$ such that $C(Y, A B)<C(Y, C D)$ only if one of the following is true:

- $D(A, B) \leq D(Y, C)$ and A or B is in Y 's nearest-neighbor-ball with scale 1.5
- $D(A, B) \geq D(Y, C)$ and Y is in A or B 's sphere of influence with scale 1.5

Proof: $C(Y, C D) \leq 2 D(Y, C)$

Saving Heuristic

Clarke-Wright Saving Heuristic (1964)

1. Start with an initial allocation of one vehicle to each customer (0 is the depot for VRP or any chosen city for TSP)

Sequential:
2. consider in turn route $(0, i, \ldots, j, 0)$
determine savings $s_{k i}$ and $s_{j l}\left(s_{k i}=c_{0 k}+c_{0 i}-c_{k i}\right)$
3. merge with the cheapest of $(k, 0)$ and $(0, I)$

Saving Heuristic

Clarke-Wright Saving Heuristic (1964)

1. Start with an initial allocation of one vehicle to each customer (0 is the depot for VRP or any chosen city for TSP)

Parallel:

2. Calculate saving $s_{i j}=c_{0 i}+c_{0 j}-c_{i j}$ and order the saving in non-increasing order
3. scan $s_{i j}$
merge routes if i) i and j are not in the same tour ii) neither i and j are interior to an existing route [iii) vehicle and time capacity are not exceeded]

Heuristics based on trees

Figure 18. The Minimum Spanning Tree heuristic.
(1) Find a minimum spanning tree $O\left(N^{2}\right)$
(2) Append the nodes in the tour in a depth-first, inorder traversal

Running time $O\left(N^{2}\right)$
$A=M S T / O P T \leq 2$

Christofides' Heuristic

Figure 18. Christofides' heuristic.
(1) Find the minimum spanning tree T. $O\left(N^{2}\right)$
(2) Find nodes in T with odd degree and find the cheapest perfect matching M in the complete graph consisting of these nodes only. Let G be the multigraph of all nodes and edges in T and M. $O\left(N^{3}\right)$
(3) Find an Eulerian walk (each node appears at least once and each edge exactly once) on G and an embedded tour. $O(N)$
Running time $O\left(N^{3}\right)$
$A=C H / O P T \leq 3 / 2$ tight, the best known is just an $\epsilon>10^{-36}$ better
(metric TSP cannot be approximated with a ratio better than $\frac{220}{219}$ unless $\mathrm{P}=\mathrm{NP}$).

1. Travelling Salesman Problem

2. Solution Approaches
3. TSP
4. Code Speed Up

Where can maximum speedup be achieved?
How much speedup should you expect?

- Caution: proceed carefully! Let the optimizing compiler do its work!
- optimizing flags
- just-in-time-compilation: it converts code at runtime prior to executing it natively, for example bytecode into native machine code. (module numba https://www.ibm.com/developerworks/ community/blogs/jfp/entry/Fast_Computation_of_AUC_ROC_score?lang=en)
- Caching, memoization (@functools.lru_cache(None))
- Profiling (module cProfile)
- Expression Rules: Recode for smaller instruction counts.
- Loop and procedure rules: Recode to avoid loop or procedure call overhead.
- Hidden costs of high-level languages
- String comparisons: proportional to length of the string, not constant
- Object construction / de-allocation: very expensive
- Matrix access: row-major order \neq column-major order
- Exploit algebraic identities
- Avoid unnecessary computations inside the loops

McGeoch reports conventional wisdom, based on studies in the literature.

- Concurrency is tricky: bad $-7 x$ to good $500 x$
- Classic algorithms: to 1 trillion and beyond
- Data-aware: up to $100 x$
- Memory-aware: up to $20 x$
- Algorithm tricks: up to $200 x$
- Code tuning: up to $10 x$
- Change platforms: up to $10 x$

