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Traveling Salesman Problem

Given: a weighted complete graph
Output: an Hamiltonian cycle of minimum total weight.

• http://www.math.uwaterloo.ca/tsp/

• “platform for the study of general methods that can be applied to a wide range of discrete
optimization problems”

• arranging school bus routes to pick up the children in a school district.
• scheduling of service calls at cable firms
• delivery of meals to homebound persons
• scheduling of stacker cranes in warehouses
• scheduling of a machine to drill holes in a circuit board or other object
• routing of trucks for parcel post pickup
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General problem vs problem instance:

General problem P:
• Given any set of points X in a square, find a shortest Hamiltonian cycle
• Solution: Algorithm that finds shortest Hamiltonian cycle for any X

Problem instantiation π:
• Given a specific set of points π in the square, find a shortest Hamiltonian cycle
• Solution: Shortest Hamiltonian cycle for π

Problems can be formalized on sets of problem instances Π (instance classes)
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Types of TSP instances:
• Complete vs incomplete graphs

• Symmetric: For all edges uv of the given graph G , vu is also in G , and wuv = wvu.
Otherwise: asymmetric.

• Metric TSP: symmetric + triangle inequality (wij ≤ wik + wkj)

• Euclidean: Vertices = points in an Euclidean space,
weight function = Euclidean distance metric.

• Geographic (metric TSP): Vertices = points on a sphere,
weight function = geographic (great circle) distance.

Alternatively, these features can become part of the general problem description and exploited in
the development of the solution algorithm
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Instance classes
• Real-life applications (geographic, VLSI)
• Random Euclidean
• Random Clustered Euclidean
• Random Distance

Available at the TSPLIB (more than 100 instances upto 85.900 cities)
and at the 8th DIMACS challenge
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Complete Algorithms and Lower Bounds
Reference Results

• Branch & cut algorithms (Concorde: http://www.math.uwaterloo.ca/tsp/concorde)
• cutting planes + branching
• use LP-relaxation for lower bounding schemes
• effective heuristics for upper bounds

Solution times with Concorde
Instance Computing nodes CPU time (secs)
att532 7 109.52
rat783 1 37.88
pcb1173 19 468.27
fl1577 7 6705.04
d2105 169 11179253.91
pr2392 1 116.86
rl5934 205 588936.85
usa13509 9539 ca. 4 years
d15112 164569 ca. 22 years
s24978 167263 84.8 CPU years

• Lower bounds: (within less than one percent of optimum for random Euclidean, up to two
percent for TSPLIB instances)
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Good way to start approaching a problem:

• Make a small example and a drawing of the problem

• Represent a solution: decision variables, data structures.
For the TSP: permutation as array of all different values corresponds to cycle notation,
alternative notation: Cauchy’s notation or (node images)

• Enumerate all possible solutions and determine the optimal solution

• For TSP: solution representation is a permutation of vertices, construct all possible
permutations by, for example, tree search.
Consider which parts of the tree can be spared.

• Rotating permuations: keep starting node fixed
• Symmetric permuations

Overall complexity O((n − 1)!/2)
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• Consider the problem as a multistage decision problem.

• fix the origin at some city, say 0 (wlog).

• Suppose that at a certain stage of an optimal tour starting at 0 one has reached a city i and
there remain k cities j1, j2, . . . , jk to be visited before returning to 0.

• Principle of Optimality for the tour being optimal, the path from i through j1, j2, . . . , jk in
some order and then to 0 must be of minimum length (if not the entire tour could not be
optimal, since its total length could be reduced by choosing a shorter path from i through
j1, j2, . . . , jk to 0).

• f (i ; {j1, j2, . . . , jk}; 0) length of a path of minimal length from i to 0 which passes exactly once
through each of the remaining k unvisited cities j1, j2, . . . , jk

• f (0; {j1, j2, . . . , jn}; 0) is the solution to the problem
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• Recursive relation

f (i ; {j1, j2, . . . , jk}; 0) = min
1≤m≤k

{dijm + f (jm; {j1, j2, . . . , jm−1, jm+1, . . . , jk}; 0)}

• f (i ; {j}; 0) = dij + dj0

• f (i ; {j1, j2}; 0) = minj1,j2{dij1 + f (j1; {j2}; 0), dij2 + f (j2; {j1}; 0)}

• n2n values f (i ; j1, j2, . . . , jk ; 0); to calculate
each value costs up to n operations if previous values available
Overall time complexity: O(n22n); memory usage O(n2n).

• This is a backward implementation. See wikipedia for a forward implementation and a
numerical example
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Construction heuristics specific for TSP
• Heuristics that Grow Fragments

• Nearest neighborhood heuristics
• Double-Ended Nearest Neighbor heuristic
• Multiple Fragment heuristic (aka, greedy heuristic)

• Heuristics that Grow Tours
• Nearest Addition
• Farthest Addition
• Random Addition
• Clarke-Wright savings heuristic

• Nearest Insertion
• Farthest Insertion
• Random Insertion

• Heuristics based on Trees
• Minimum spanning tree heuristic
• Christofides’ heuristics
• Fast recursive partitioning heuristic
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Heuristics that grow fragments
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[Bentley, 1992]

NN (Flood, 1956)
1 Randomly select a starting node
2 Add to the last node the closest node until no more nodes are available
3 Connect the last node with the first node

Running time O(N2)
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• In geometric instances: NN < (⌈logN⌉+1)
2 · OPT

• Double-Ended NN
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Build(PtSet)
Perm[1]:=StartPt
DeletePt(Perm[1])
for i:=2 to N do

Perm[i]:=NN(Perm[i-1])
DeletePt(Perm[i])
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• Construction in O(n log n) time and O(n) space

• Range search: reports the leaves from a split node.

• Delete(PointNum) amortized constant time

• NearestNeighbor(PointNum) bottom-up search
visit nodes + compute distances
A+ BNC , A > 0,B < 0,−1 < C < 0 (expected constant time) if no deletions happened and
data uniform

• FixedRadiusNearestNeighbor(PointNum, Radius, function)

• BallSearch(PointNum, function) ball centered at point

• SetRadius(PointNum, float Radius)

• SphereOfInfluence(PointNum, float Radius) ball centered at point with given radius
21
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[Bentley, 1992]

• Add the cheapest edge provided it does not create a cycle.

• O(
√
N) approximation
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• Array Degree num. of tour edges

• K-d tree for nearest neighbor searching (only eligible nodes)

• Array NNLink containing index to nearest neighbor of i not in the fragment of i

• Priority queue (heap) with nearest neighbor links

• Array Tail link to the other tail of current fragments.
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• Exploit the locality inherent in the problem to solve it
(NN search, Fixed-radius search, ball search)

• Search time modelled by a function A+ BNC

• Number of searches

• Priority queue of links to nearest neighbors
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Heuristics that grow tours

Cross product of Variable selection Value selection
Expansion rule

Nearest Addition
Farthest Insertion
Random
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[Bentley, 1992]

NA
1 Select a node and its closest node and build a tour of two nodes
2 Insert in the tour the closest node v until no more node are available

Tour maintained as a double lined list
Running time O(N3)
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[Bentley, 1992]

FA
1 Select a node and its farthest and build a tour of two nodes
2 Insert in the tour the farthest node v until no more node are available

FA is more effective than NA because the first few farthest points sketch a broad outline of the
tour that is refined after.

Running time O(N3)
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Motivation:

• A and B are far from Y relative to the distance from Y ’s nearest neighbor
• Y is near to A relative to the length of the edge AB.

Nearest Neighbor-ball at a point Y with scale S is a ball centered at Y with radius S times the
distance from Y to its nearest neighbor among the points in the tour (eg, D(Y ,C )).

Sphere of influence at tour vertex A with scale S is a ball centered at A with radius S times the
length of the longer edge adjacent to A (eg, D(A,B)).
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Y not yet in tour
C nearest neighbor of Y
D neighbor of C in tour that minimize C (Y ,CD)
There exists an edge AB such that C (Y ,AB) < C (Y ,CD) only if one of the following is true:

• D(A,B) ≤ D(Y ,C ) and A or B is in Y ’s nearest-neighbor-ball with scale 1.5
• D(A,B) ≥ D(Y ,C ) and Y is in A or B’s sphere of influence with scale 1.5

Proof: C (Y ,CD) ≤ 2D(Y ,C )
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Clarke-Wright Saving Heuristic (1964)
1. Start with an initial allocation of one vehicle to each customer (0 is the depot for VRP or any

chosen city for TSP)

Sequential:
2. consider in turn route (0, i , . . . , j , 0)

determine savings ski and sjl (ski = c0k + c0i − cki )
3. merge with the cheapest of (k , 0) and (0, l)
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Clarke-Wright Saving Heuristic (1964)
1. Start with an initial allocation of one vehicle to each customer (0 is the depot for VRP or any

chosen city for TSP)

Parallel:
2. Calculate saving sij = c0i + c0j − cij and order the saving in non-increasing order
3. scan sij

merge routes if i) i and j are not in the same tour ii) neither i and j are interior to an existing
route [iii) vehicle and time capacity are not exceeded]
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Heuristics based on trees
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[Bentley, 1992]

1 Find a minimum spanning tree O(N2)

2 Append the nodes in the tour in a depth-first, inorder traversal
Running time O(N2)
A = MST/OPT ≤ 2
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[Bentley, 1992]

1 Find the minimum spanning tree T. O(N2)
2 Find nodes in T with odd degree and find the cheapest perfect matching M in the complete

graph consisting of these nodes only. Let G be the multigraph of all nodes and edges in T and
M. O(N3)

3 Find an Eulerian walk (each node appears at least once and each edge exactly once) on G and
an embedded tour. O(N)

Running time O(N3)
A = CH/OPT ≤ 3/2 tight, the best known is just an ϵ > 10−36 better
(metric TSP cannot be approximated with a ratio better than 220

219 unless P=NP). 36
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Where can maximum speedup be achieved?
How much speedup should you expect?
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• Caution: proceed carefully! Let the optimizing compiler do its work!

• optimizing flags

• just-in-time-compilation: it converts code at runtime prior to executing it natively, for example
bytecode into native machine code. (module numba https://www.ibm.com/developerworks/
community/blogs/jfp/entry/Fast_Computation_of_AUC_ROC_score?lang=en)

• Caching, memoization (@functools.lru_cache(None))

• Profiling (module cProfile)
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• Expression Rules: Recode for smaller instruction counts.

• Loop and procedure rules: Recode to avoid loop or procedure call overhead.

• Hidden costs of high-level languages

• String comparisons: proportional to length of the string, not constant

• Object construction / de-allocation: very expensive

• Matrix access: row-major order ̸= column-major order

• Exploit algebraic identities

• Avoid unnecessary computations inside the loops
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McGeoch reports conventional wisdom, based on studies in the literature.
• Concurrency is tricky: bad -7x to good 500x
• Classic algorithms: to 1trillion and beyond
• Data-aware: up to 100x
• Memory-aware: up to 20x
• Algorithm tricks: up to 200x
• Code tuning: up to 10x
• Change platforms: up to 10x
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