
DM841

Discrete Optimization — Heuristics

Construction Heuristics for
Traveling Salesman Problem

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpOutline

1. Travelling Salesman Problem

2. Solution Approaches

3. TSP

4. Code Speed Up

2



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpOutline

1. Travelling Salesman Problem

2. Solution Approaches

3. TSP

4. Code Speed Up

3



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpTraveling Salesman Problem

Traveling Salesman Problem

Given: a weighted complete graph
Output: an Hamiltonian cycle of minimum total weight.

• http://www.math.uwaterloo.ca/tsp/

• “platform for the study of general methods that can be applied to a wide range of discrete
optimization problems”

• arranging school bus routes to pick up the children in a school district.
• scheduling of service calls at cable firms
• delivery of meals to homebound persons
• scheduling of stacker cranes in warehouses
• scheduling of a machine to drill holes in a circuit board or other object
• routing of trucks for parcel post pickup

4

http://www.math.uwaterloo.ca/tsp/


Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpGeneral vs Instance

General problem vs problem instance:

General problem P:
• Given any set of points X in a square, find a shortest Hamiltonian cycle
• Solution: Algorithm that finds shortest Hamiltonian cycle for any X

Problem instantiation π:
• Given a specific set of points π in the square, find a shortest Hamiltonian cycle
• Solution: Shortest Hamiltonian cycle for π

Problems can be formalized on sets of problem instances Π (instance classes)

5



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpTraveling Salesman Problem

Types of TSP instances:
• Complete vs incomplete graphs

• Symmetric: For all edges uv of the given graph G , vu is also in G , and wuv = wvu.
Otherwise: asymmetric.

• Metric TSP: symmetric + triangle inequality (wij ≤ wik + wkj)

• Euclidean: Vertices = points in an Euclidean space,
weight function = Euclidean distance metric.

• Geographic (metric TSP): Vertices = points on a sphere,
weight function = geographic (great circle) distance.

Alternatively, these features can become part of the general problem description and exploited in
the development of the solution algorithm

6



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpTSP: Benchmark Instances

Instance classes
• Real-life applications (geographic, VLSI)
• Random Euclidean
• Random Clustered Euclidean
• Random Distance

Available at the TSPLIB (more than 100 instances upto 85.900 cities)
and at the 8th DIMACS challenge

7



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpTSP: Instance Examples

8



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed Up

Complete Algorithms and Lower Bounds
Reference Results

• Branch & cut algorithms (Concorde: http://www.math.uwaterloo.ca/tsp/concorde)
• cutting planes + branching
• use LP-relaxation for lower bounding schemes
• effective heuristics for upper bounds

Solution times with Concorde
Instance Computing nodes CPU time (secs)
att532 7 109.52
rat783 1 37.88
pcb1173 19 468.27
fl1577 7 6705.04
d2105 169 11179253.91
pr2392 1 116.86
rl5934 205 588936.85
usa13509 9539 ca. 4 years
d15112 164569 ca. 22 years
s24978 167263 84.8 CPU years

• Lower bounds: (within less than one percent of optimum for random Euclidean, up to two
percent for TSPLIB instances)

9

http://www.math.uwaterloo.ca/tsp/concorde


Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpOutline

1. Travelling Salesman Problem

2. Solution Approaches

3. TSP

4. Code Speed Up

10



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpEnumeration

Good way to start approaching a problem:

• Make a small example and a drawing of the problem

• Represent a solution: decision variables, data structures.
For the TSP: permutation as array of all different values corresponds to cycle notation,
alternative notation: Cauchy’s notation or (node images)

• Enumerate all possible solutions and determine the optimal solution

• For TSP: solution representation is a permutation of vertices, construct all possible
permutations by, for example, tree search.
Consider which parts of the tree can be spared.

• Rotating permuations: keep starting node fixed
• Symmetric permuations

Overall complexity O((n − 1)!/2)

11



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpHeld Karp Algorithm: Dynamic Programming

• Consider the problem as a multistage decision problem.

• fix the origin at some city, say 0 (wlog).

• Suppose that at a certain stage of an optimal tour starting at 0 one has reached a city i and
there remain k cities j1, j2, . . . , jk to be visited before returning to 0.

• Principle of Optimality for the tour being optimal, the path from i through j1, j2, . . . , jk in
some order and then to 0 must be of minimum length (if not the entire tour could not be
optimal, since its total length could be reduced by choosing a shorter path from i through
j1, j2, . . . , jk to 0).

• f (i ; {j1, j2, . . . , jk}; 0) length of a path of minimal length from i to 0 which passes exactly once
through each of the remaining k unvisited cities j1, j2, . . . , jk

• f (0; {j1, j2, . . . , jn}; 0) is the solution to the problem
12



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed Up

• Recursive relation

f (i ; {j1, j2, . . . , jk}; 0) = min
1≤m≤k

{dijm + f (jm; {j1, j2, . . . , jm−1, jm+1, . . . , jk}; 0)}

• f (i ; {j}; 0) = dij + dj0

• f (i ; {j1, j2}; 0) = minj1,j2{dij1 + f (j1; {j2}; 0), dij2 + f (j2; {j1}; 0)}

• n2n values f (i ; j1, j2, . . . , jk ; 0); to calculate
each value costs up to n operations if previous values available
Overall time complexity: O(n22n); memory usage O(n2n).

• This is a backward implementation. See wikipedia for a forward implementation and a
numerical example

13



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpOutline

1. Travelling Salesman Problem

2. Solution Approaches

3. TSP

4. Code Speed Up

14



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpConstruction Heuristics for TSP

Construction heuristics specific for TSP
• Heuristics that Grow Fragments

• Nearest neighborhood heuristics
• Double-Ended Nearest Neighbor heuristic
• Multiple Fragment heuristic (aka, greedy heuristic)

• Heuristics that Grow Tours
• Nearest Addition
• Farthest Addition
• Random Addition
• Clarke-Wright savings heuristic

• Nearest Insertion
• Farthest Insertion
• Random Insertion

• Heuristics based on Trees
• Minimum spanning tree heuristic
• Christofides’ heuristics
• Fast recursive partitioning heuristic

15



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed Up

Heuristics that grow fragments

16



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpNearest Neighbor Heuristic

[Bentley, 1992]

NN (Flood, 1956)
1 Randomly select a starting node
2 Add to the last node the closest node until no more nodes are available
3 Connect the last node with the first node

Running time O(N2)
17



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpNearest Neighbor Heuristic

• In geometric instances: NN < (⌈logN⌉+1)
2 · OPT

• Double-Ended NN

18



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpNearest Neighbor Heuristic

Build(PtSet)
Perm[1]:=StartPt
DeletePt(Perm[1])
for i:=2 to N do

Perm[i]:=NN(Perm[i-1])
DeletePt(Perm[i])

19



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpData Structure: kd-tree

20



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpData Structure: kd-tree

• Construction in O(n log n) time and O(n) space

• Range search: reports the leaves from a split node.

• Delete(PointNum) amortized constant time

• NearestNeighbor(PointNum) bottom-up search
visit nodes + compute distances
A+ BNC , A > 0,B < 0,−1 < C < 0 (expected constant time) if no deletions happened and
data uniform

• FixedRadiusNearestNeighbor(PointNum, Radius, function)

• BallSearch(PointNum, function) ball centered at point

• SetRadius(PointNum, float Radius)

• SphereOfInfluence(PointNum, float Radius) ball centered at point with given radius
21



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed Up

22



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpGreedy Heuristic for TSP

[Bentley, 1992]

• Add the cheapest edge provided it does not create a cycle.

• O(
√
N) approximation

23



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpGreedy Heuristic: Implementation Details

• Array Degree num. of tour edges

• K-d tree for nearest neighbor searching (only eligible nodes)

• Array NNLink containing index to nearest neighbor of i not in the fragment of i

• Priority queue (heap) with nearest neighbor links

• Array Tail link to the other tail of current fragments.

24



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpImportant Elements

• Exploit the locality inherent in the problem to solve it
(NN search, Fixed-radius search, ball search)

• Search time modelled by a function A+ BNC

• Number of searches

• Priority queue of links to nearest neighbors

25



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed Up

Heuristics that grow tours

Cross product of Variable selection Value selection
Expansion rule

Nearest Addition
Farthest Insertion
Random

26



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpAddition Heuristics

[Bentley, 1992]

NA
1 Select a node and its closest node and build a tour of two nodes
2 Insert in the tour the closest node v until no more node are available

Tour maintained as a double lined list
Running time O(N3)

27



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpAddition Heuristics

[Bentley, 1992]

FA
1 Select a node and its farthest and build a tour of two nodes
2 Insert in the tour the farthest node v until no more node are available

FA is more effective than NA because the first few farthest points sketch a broad outline of the
tour that is refined after.

Running time O(N3)
28



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpAddition Heuristics

29



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpInsertion Heuristics

Motivation:

• A and B are far from Y relative to the distance from Y ’s nearest neighbor
• Y is near to A relative to the length of the edge AB.

Nearest Neighbor-ball at a point Y with scale S is a ball centered at Y with radius S times the
distance from Y to its nearest neighbor among the points in the tour (eg, D(Y ,C )).

Sphere of influence at tour vertex A with scale S is a ball centered at A with radius S times the
length of the longer edge adjacent to A (eg, D(A,B)).

30



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpTheorem

Y not yet in tour
C nearest neighbor of Y
D neighbor of C in tour that minimize C (Y ,CD)
There exists an edge AB such that C (Y ,AB) < C (Y ,CD) only if one of the following is true:

• D(A,B) ≤ D(Y ,C ) and A or B is in Y ’s nearest-neighbor-ball with scale 1.5
• D(A,B) ≥ D(Y ,C ) and Y is in A or B’s sphere of influence with scale 1.5

Proof: C (Y ,CD) ≤ 2D(Y ,C )

32



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpSaving Heuristic

Clarke-Wright Saving Heuristic (1964)
1. Start with an initial allocation of one vehicle to each customer (0 is the depot for VRP or any

chosen city for TSP)

Sequential:
2. consider in turn route (0, i , . . . , j , 0)

determine savings ski and sjl (ski = c0k + c0i − cki )
3. merge with the cheapest of (k , 0) and (0, l)

33



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpSaving Heuristic

Clarke-Wright Saving Heuristic (1964)
1. Start with an initial allocation of one vehicle to each customer (0 is the depot for VRP or any

chosen city for TSP)

Parallel:
2. Calculate saving sij = c0i + c0j − cij and order the saving in non-increasing order
3. scan sij

merge routes if i) i and j are not in the same tour ii) neither i and j are interior to an existing
route [iii) vehicle and time capacity are not exceeded]

33



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed Up

Heuristics based on trees

34



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpMinimum Spanning Tree Heuristics

[Bentley, 1992]

1 Find a minimum spanning tree O(N2)

2 Append the nodes in the tour in a depth-first, inorder traversal
Running time O(N2)
A = MST/OPT ≤ 2

35



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpChristofides’ Heuristic

[Bentley, 1992]

1 Find the minimum spanning tree T. O(N2)
2 Find nodes in T with odd degree and find the cheapest perfect matching M in the complete

graph consisting of these nodes only. Let G be the multigraph of all nodes and edges in T and
M. O(N3)

3 Find an Eulerian walk (each node appears at least once and each edge exactly once) on G and
an embedded tour. O(N)

Running time O(N3)
A = CH/OPT ≤ 3/2 tight, the best known is just an ϵ > 10−36 better
(metric TSP cannot be approximated with a ratio better than 220

219 unless P=NP). 36



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpOutline

1. Travelling Salesman Problem

2. Solution Approaches

3. TSP

4. Code Speed Up

37



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpWhere do speedups come from?

Where can maximum speedup be achieved?
How much speedup should you expect?

38



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpCode Tuning

• Caution: proceed carefully! Let the optimizing compiler do its work!

• optimizing flags

• just-in-time-compilation: it converts code at runtime prior to executing it natively, for example
bytecode into native machine code. (module numba https://www.ibm.com/developerworks/
community/blogs/jfp/entry/Fast_Computation_of_AUC_ROC_score?lang=en)

• Caching, memoization (@functools.lru_cache(None))

• Profiling (module cProfile)

39

https://www.ibm.com/developerworks/community/blogs/jfp/entry/Fast_Computation_of_AUC_ROC_score?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/Fast_Computation_of_AUC_ROC_score?lang=en


Travelling Salesman Problem
Solution Approaches
TSP
Code Speed Up

• Expression Rules: Recode for smaller instruction counts.

• Loop and procedure rules: Recode to avoid loop or procedure call overhead.

• Hidden costs of high-level languages

• String comparisons: proportional to length of the string, not constant

• Object construction / de-allocation: very expensive

• Matrix access: row-major order ̸= column-major order

• Exploit algebraic identities

• Avoid unnecessary computations inside the loops

40



Travelling Salesman Problem
Solution Approaches
TSP
Code Speed UpWhere Speedups Come From?

McGeoch reports conventional wisdom, based on studies in the literature.
• Concurrency is tricky: bad -7x to good 500x
• Classic algorithms: to 1trillion and beyond
• Data-aware: up to 100x
• Memory-aware: up to 20x
• Algorithm tricks: up to 200x
• Code tuning: up to 10x
• Change platforms: up to 10x

41


	Travelling Salesman Problem
	Solution Approaches
	TSP
	Code Speed Up

