DM841

Discrete Optimization - Heuristics

Very Large-Scale Neighborhoods

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Course Overview

v/ Local Search: Components, Basic Algorithms

v Local Search: Neighborhoods and Search Landscape

v/ Metaheuristics: Construction based, LS based, Population based

v/ Working Environment and Implementation Frameworks

v Methods for the Analysis of Experimental Results

v’ Algorithm Configuration and Selection

v Efficient Local Search: neighborhood pruning, incremental updates and data structures

® Large Scale Neighborhoods

Examples: SAT, TSP, PB, GCP, Steiner Tree, Unrelated Parallel Machines, ...

Very Large Scale Neighborhoods

Small neighborhoods:
® might be short-sighted
® need many steps to traverse the search space
Large neighborhoods
® introduce large modifications to reach higher quality solutions
® allow to traverse the search space in few steps

Key idea: use very large neighborhoods that can be searched efficiently (preferably in polynomial
time) or are searched heuristically

Variable Depth Search
Ejection Chains

Exa m ple (G C P) \I:I)Vyeri:;::::ll\;latching Neighborhoo

Neighborhood Structures: Very Large Scale Neighborhood Cyelic Bxchange Neighborhoods

One Exchange Path Exchange

Swap Cyclic Exchange

Variable Depth Search
Ejection Chains
Dynasearch

Very large scale neighborhood search O et e borhami

1. define an exponentially large neighborhood
(though, O(n®) might already be large)

2. define a polynomial time search algorithm to search the neighborhood
(= solve the neighborhood search problem, NSP)

® exactly (leads to a best improvement strategy)

® heuristically (some improving moves might be missed)

Examples of VLSN Search

[Ahuja, Ergun, Orlin, Punnen, 2002]

® based on concatenation of simple moves

® Variable Depth Search (Lin-Kernighan for TSP and Graph Partitioning)
® Ejection Chains

® based on Dynamic Programming or Network Flows
® Dynasearch (ex. SMTWTP)
Weighted Matching based neighborhoods (ex. TSP)
Cyclic exchange neighborhood (ex. VRP)
Shortest path

® based on polynomially solvable special cases of hard combinatorial optimization problems

® Pyramidal tours
® Halin Graphs

Variable Depth Search
Ejection Chains
Dynasearch

. Weighted Matching Neighborhoo
Outline

Cyclic Exchange Neighborhoods

1. Variable Depth Search

Variable Depth Search

Variable Depth Search

e Key idea: Complex steps in large neighborhoods = variable-length sequences of simple steps
in small neighborhood.

® Use various feasibility restrictions on selection of simple search steps to limit time complexity
of constructing complex steps.

® Perform lterative Improvement w.r.t. complex steps.

Variable Depth Search (VDS):

determine initial candidate solution s
while s is not locally optimal do
ti=s
repeat
select best feasible neighbor t of £
if 7(t) < f(f) then
ti=t
si=1
until construction of complex step has been completed;

Variable Depth Search
Ejection Chains
Dynasearch

VLSN for the Traveling Salesman Problem PaSi i

Cyclic Exchange Neighborhoods

® k-exchange heuristics
® 2-opt [Flood, 1956, Croes, 1958]
2.5-opt or 2H-opt
Or-opt [Or, 1976]
3-opt [Block, 1958]
k-opt [Lin 1965]

® complex neighborhoods
® Lin-Kernighan [Lin and Kernighan, 1965]
Helsgaun's Lin-Kernighan
Dynasearch
Ejection chains approach

10

Variable Depth Search

Ejection Chains

Dynasearch

Weighted Matching Neighborhoo
Cyclic Exchange Neighborhoods

The Lin-Kernighan (LK) Algorithm for the TSP (1)

® Complex search steps correspond to sequences
of 2-exchange steps and are constructed from
sequences of Hamiltonian paths

® j-path: Hamiltonian path p + 1 edge connecting one end of p to interior node of p

11

Basic LK exchange step:
® Start with Hamiltonian path (u, ..., v):

u \4
o N T T T T T T T T

® Obtain ¢-path by adding an edge (v, w):

u w,-~ \\\V
O T T T T T T T T e

® Break cycle by removing edge (w, v'):

u w.- Vv v

® Note: Hamiltonian path can be completed
into Hamiltonian cycle by adding edge (', u):

U WV v

Variable Depth Search

Construction of complex LK steps:

1. start with current candidate solution (Hamiltonian cycle) s;
set t* 1= s;
set p:=s

2. obtain d-path p’ by replacing one edge in p

3. consider Hamiltonian cycle t obtained from p by
(uniquely) defined edge exchange

4. if w(t) < w(t*) then

set t* :=t; p:= p’; go to step 2

else accept t* as new current candidate solution s

Note: This can be interpreted as sequence of 1-exchange steps that alternate between J-paths and
Hamiltonian cycles.

13

Variable Depth Search

Mechanisms used by LK algorithm:

® Pruning exact rule: If a sequence of numbers has a positive sum, there is a cyclic permutation
of these numbers such that every partial sum is positive.
®» need to consider only gains whose partial sum remains positive

® Tabu restriction: Any edge that has been added cannot be removed and any edge that has
been removed cannot be added in the same LK step.

Note: This limits the number of simple steps in a complex LK step.

® | imited form of backtracking ensures that local minimum found by the algorithm is optimal
w.r.t. standard 3-exchange neighborhood

o (For further details, see original article)

[LKH Helsgaun's implementation http://www.akira.ruc.dk/ keld/research/LKH/ (99 pages report)]

14

http://www.akira.ruc.dk/~keld/research/LKH/

Variable Depth Search
Ejection Chains
Dynasearch

e wserch
Graph Partitioning Oy Exchamat Neighborhants

Graph Partitioning

Given: G = (V. E), weighted function w : V — R, a positive number p: 0 < w; < p, Vi and a
connectivity matrix C = [¢;] € RIVIXIVI,

Task: A k-partition of G, Vi, Vo, ..., Vi: [J; V; = G such that:

® it is admissible, ie, |V;| < p for all / and

® it has minimum cost, ie, the sum of ¢j, i,/ that belong to different subsets is mimimal

17

Variable Depth Search

Focus on 2-way partitions in sets A and B of equal size (n+ n)

For each a € A: external cost, £, = >, g Cap; internal cost: /, = >
Foreach z € S: D, = E, — |,

ceA Cac

Interchange of a and b has gain: g., = D, + Dy — 2cap
Select aj and b; with maximum gain.

Recalculate the D values for elements of A\ {a;1} and B\ {b;}:
D), = Dy + 2¢ya, — 2¢yp, for y € A\ {a1}
D! = Dy + 2¢yp, — 2Cxa, Tor x € B\ {b1}

Repeat the last two steps conditional to the previous until all vertices are swapped.
Since > g; = 0 then there is an intereation k that maximizes the partial sum Zf;l g =G

If G > 0 then make the change, if G = 0 then we are in a local optimum.

18

Variable Depth Search
Ejection Chains
Dynasearch

. Weighted Matching Neighborhoo
Outline

Cyclic Exchange Neighborhoods

2. Ejection Chains

19

Ejection Chains

Ejection Chains

Attempt to use large neighborhoods without examining them exhaustively

® Sequences of successive steps each influenced by the precedent and determined by myopic
choices

Limited in length

® | ocal optimality in the large neighborhood is not guaranteed.

Example (on TSP):
successive 2-exchanges where each exchange involves one edge of the previous exchange

Example (on GCP):

successive 1-exchanges: a vertex v; changes color from ¢(v1) = ¢; to ¢, in turn forcing some
vertex v, with color ¢(v2) = ¢, to change to another color c; (which may be different or equal to
¢1) and again forcing a vertex v3 with color ¢(v3) = c3 to change to color ¢;.

20

Variable Depth Search
Ejection Chains
Dynasearch

. Weighted Matching Neighborhoo
Outline

Cyclic Exchange Neighborhoods

3. Dynasearch

21

Single Machine Total Weighted Tardiness

Given: a set of n jobs {J;,...,J,} to be processed on a single machine
and for each job J; a processing time p;, a weight w; and a due date d;.

Task: Find a schedule that minimizes
the total weighted tardiness > 7, w; - T;
where T; = max{C; — d;,0} (C; completion time of job J;)

Example:

Job J1 J2 J3 J4 J5 J6
Processing Time 3 2 2 3 4 3
Due date 6 13 4 9 7 17
Weight 2 3 1 5 1 2

Sequence ¢ = J37 J17 J57 J47 J17 J6

Job J3 J1 J5 J4 J2 J6
G 2 5 9 12 14 17
T; o o0 2 3 1 0
wi;-T; 0 0 2 15 3 0

Variable Depth Search

Ejection Chains

Dynasearch

Weighted Matching Neighborhoo
Cyclic Exchange Neighborhoods

22

Variable Depth Search
Ejection Chains
Dynasearch

Single Machine Total Weighted Tardiness Problem ez

® Interchange: size (5) and O(|i — j|) evaluation each
® first-improvement: 7,
pr; < px, for improvements, w;T; + wy Ty must decrease because jobs in 7;
can only increase their tardiness.
pr; > Pr, possible use of auxiliary data structure to speed up the computation
® best-improvement: 7, 7
Pr; < Py for improvements, w; Tj+wy T, must decrease at least as the best interchange
found so far because jobs in 7}, ..., 7« can only increase their tardiness.
px; > px, possible use of auxiliary data structure to speed up the computation

® Swap: size n — 1 and O(1) evaluation each

® Insert: size (n — 1)? and O(|i —j|) evaluation each
But possible to speed up with systematic examination by means of swaps: an interchange is
equivalent to |/ — j| swaps hence overall examination takes O(n?)

23

Dynasearch

Dynasearch

® |terative improvement method based on building complex search steps from combinations of
mutually independent search steps

® Mutually independent search steps do not interfere with each other wrt effect on evaluation
function and feasibility of candidate solutions.

Example: Independent 2-exchange steps for the TSP:

./\/\/\../\/\/\../\/\/\../\/\/\.'f\/\/\.—.

up T Uj Ugg Uk Uger O Uy Uy Upyg
Therefore: Overall effect of complex search step = sum of effects of constituting simple steps;
complex search steps maintain feasibility of candidate solutions.

e Key idea: Efficiently find optimal combination of mutually independent simple search steps
using Dynamic Programming.

24

Dynasearch

Dynasearch for SMTWTP

® two interchanges 0jx and d,, are independent
if max{j, k} < min{/, m} or min{j, k} > max{/, m};

® the dynasearch neighborhood is obtained by a series of independent interchanges;

® it has size 2"~ — 1 (the number of subsets of n — 1 positions, the nth position involvement
being decided consequently and minus 1 because of the case of no change);

® but a best move can be found in O(n?) searched by dynamic programming;

® it yields in average better results than the interchange neighborhood alone.

25

Table 1 Data for the Problem Instance

Variable Depth Search

Ejection Chains

Dynasearch

Weighted Matching Neighborhoo
Cyclic Exchange Neighborhoods

Job j 1 2 3 4 5 6
Processing time p; 3 1 1 5 1 5
Weight w; 3 5 1 1 4 4
Due date d; 1 5 3 1 3 1

Table 2 Swaps Made by Best-Improve Descent

Total Weighted

Iteration Current Sequence Tardiness
123456 109

1 123546 90

2 123564 75

3 523164 70

Table3 Dynasearch Swaps

Total Weighted

Iteration Current Sequence Tardiness
123456 109

1 132546 89

2 152364 68

3 512364 67

26

Variable Depth Search

Ejection Chains

Dynasearch

Weighted Matching Neighborhoo
Cyclic Exchange Neighborhoods

state (k,7)
Ty is the partial sequence at state (k,7) that has min 3. w; T;

7 is obtained from state (/,)

appending job 7 (k) after m(i) i=k—1
appending job 7(k) and interchanging w(i + 1) and m(k) 0<i< k-1

F(mo) =0; F(m1) = waqr) (Pr(1) — deq)) s

F(mk=1) 4 Wa(k) (Cr) — d‘n-(k))Jr :

. +
Fme) = min § 1< P 0 (Gt + o) o)+

k—1 N
+ Xjsita Wa() (Cwo) T Pr(i) ~ Prtien) ~ dr() F
+Wﬂ-(,'+1) (Cﬂ—(k) - 7'r l+1)) }

27

Dynasearch

® The best choice is computed by recursion in O(n*) and the optimal series of interchanges for
F(m,) is found by backtrack.

® | ocal search with dynasearch neighborhood starts from an initial sequence, generated by ATC,
and at each iteration applies the best dynasearch move, until no improvement is possible (that
is, F(rl) = F(Wfffl)), for iteration t).

® Speedups:
® pruning with considerations on p, () and pr(i;1)
® maintainig a string of late, no late jobs

® h; largest index s.t. 7"V (k) = 772 (k) for k =1, ..., he then F(Witil)) = F(W£t72)) for
k=1,...,h; and at iter t no need to consider | < h;.

28

Dynasearch

Dynasearch, refinements:

® [Grosso et al. 2004] add insertion moves to interchanges.

® [Ergun and Orlin 2006] show that dynasearch neighborhood can be searched in O(n?).

29

Dynasearch

Performance:

® exact solution via branch and bound feasible up to 40 jobs
[Potts and Wassenhove, Oper. Res., 1985]

® exact solution via time-indexed integer programming formulation used to lower bound in
branch and bound solves instances of 100 jobs in 4-9 hours [Pan and Shi, Math. Progm., 2007]

® dynasearch: results reported for 100 jobs within a 0.005% gap from optimum in less than 3
seconds [Grosso et al., Oper. Res. Lett., 2004]

30

Variable Depth Search
Ejection Chains
Dynasearch

. Weighted Matching Neighborhoo
Outline

Cyclic Exchange Neighborhoods

4. Weighted Matching Neighborhoods

31

Weighted Matching Neighborhoods Ao Aottt vt

® Key idea use basic polynomial time algorithms, example: weighted matching in bipartied
graphs, shortest path, minimum spanning tree.

® Neighborhood defined by finding a minimum cost matching on a (bipartite) improvement graph

Example (TSP)
Neighborhood: Eject k nodes and reinsert them optimally

32

Variable Depth Search
Ejection Chains
Dynasearch

. Weighted Matching Neighborhoo
Outline

Cyclic Exchange Neighborhoods

5. Cyclic Exchange Neighborhoods

33

Variable Depth Search

Ejection Chains

Dynasearch

Weighted Matching Neighborhoo

Cyclic Exchange Neighborhoods Cyele Exchamge Neighberhoods

® Possible for problems where solution can be represented as form of partitioning
k

® Definition of a neighborhood search problem in a partitioning problem (minT,eTZ c(Ty)):

i=1
Given: a set W/ of n elements, a collection 7 = {Ty, T, ..., Ty} of subsets of W, such that

W =TiU...UT,and T; N T; =0, and a cost function c : 7 — R:
Task: Find a partition 7' of W by means of single exchanges between the sets such that
(T < e(T)

® Cyclic exchange: I

34

Variable Depth Search

Ejection Chains

Dynasearch

Weighted Matching Neighborhoo
Cyclic Exchange Neighborhoods

Neighborhood search

® Define an improvement graph

® Solve the relative

® Subset Disjoint Negative Cost Cycle Problem

® Subset Disjoint Minimum Cost Cycle Problem

35

Variable Depth Search
Ejection Chains

Exa m ple (G C P) \?V);?;E::;Ckllatching Neighborhoo

Neighborhood Structures: Very Large Scale Neighborhood Cyelic Exchange Neighborhoods

One Exchange Path Exchange

Swap Cyclic Exchange

36

Variable Depth Search
Ejection Chains

Dynasearch
Example (GCP) W g ighbahos
Examination of the Very Large Scale Neighborhood yelle Exchangs Telghborhoods

Exponential size but can be searched efficiently

\
W/

Improvement Graph

A Subset Disjoint Negative Cost Cycle Problem in the Improvement Graph can be solved by
dynamic programming in O(|V/|?2%|D’|).
Yet, heuristic rules can be adopted to reduce the complexity to O(|V'|?)

37

Procedure SDNCC(G'(V’, D"))
Let P all negative cost paths of length 1, Mark all paths in P as untreated
Initialize the best cycle g* = () and ¢* =0
for all p € P do
if (e(p).s(p)) € D" and c(p) + c(e(p),s(p)) < c* then
| g* = the cycle obtained by closing p and ¢* = ¢(g")

while P £ () do
Let P = P be the set of untreated paths
P=0

while p € P untreated do
Select some untreated path p € P and mark it as treated
for all (e(p),j) € D" s.t. wy(,,)(p) = 0 and c(p) + c(e(p),j) < 0 do
Add the extended path (s(p), ...,e(p),J) to P as untreated
if (/,s(p)) € D" and c(p) + c(e(p).J) + c(/,s(p)) < ¢ then
q" = the cycle obtained closing the path (s(p),...,e(p),))
¢ = c(q7)

fc:r all p € P subject to w(p') = w(p), s(p’) = s(p), e(p’) = e(p) do
| Remove from P the path of higher cost between p and p’

return a minimal negative cost cycle g* of cost c*

	Variable Depth Search
	Ejection Chains
	Dynasearch
	Weighted Matching Neighborhoods
	Cyclic Exchange Neighborhoods

