DM841 Discrete Optimization - Heuristics

Very Large-Scale Neighborhoods

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

- ✔ Local Search: Components, Basic Algorithms
- ✓ Local Search: Neighborhoods and Search Landscape
- ✓ Metaheuristics: Construction based, LS based, Population based
- ✔ Working Environment and Implementation Frameworks
- ✓ Methods for the Analysis of Experimental Results
- ✔ Algorithm Configuration and Selection
- Efficient Local Search: neighborhood pruning, incremental updates and data structures
- **≭** Large Scale Neighborhoods

Examples: SAT, TSP, PB, GCP, Steiner Tree, Unrelated Parallel Machines, ...

Very Large Scale Neighborhoods

Variable Depth Search Ejection Chains Dynasearch Weighted Matching Neighborhoo Cyclic Exchange Neighborhoods

Small neighborhoods:

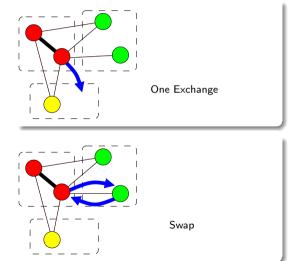
- might be short-sighted
- need many steps to traverse the search space

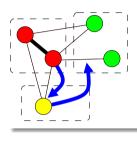
Large neighborhoods

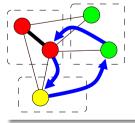
- introduce large modifications to reach higher quality solutions
- allow to traverse the search space in few steps

Key idea: use very large neighborhoods that can be searched efficiently (preferably in polynomial time) or are searched heuristically

Example (GCP)
Neighborhood Structures: Very Large Scale Neighborhood







Cyclic Exchange

Very large scale neighborhood search

- 1. define an exponentially large neighborhood (though, $O(n^3)$ might already be large)
- 2. define a polynomial time search algorithm to search the neighborhood (= solve the neighborhood search problem, NSP)
 - exactly (leads to a best improvement strategy)
 - heuristically (some improving moves might be missed)

[Ahuja, Ergun, Orlin, Punnen, 2002]

- based on concatenation of simple moves
 - Variable Depth Search (Lin-Kernighan for TSP and Graph Partitioning)
 - Ejection Chains
- based on Dynamic Programming or Network Flows
 - Dynasearch (ex. SMTWTP)
 - Weighted Matching based neighborhoods (ex. TSP)
 - Cyclic exchange neighborhood (ex. VRP)
 - Shortest path
- based on polynomially solvable special cases of hard combinatorial optimization problems
 - Pyramidal tours
 - Halin Graphs

Outline

- 1. Variable Depth Search
- 2. Ejection Chain
- Dynasearch
- 4. Weighted Matching Neighborhoods
- 5. Cyclic Exchange Neighborhoods

Variable Depth Search

- **Key idea:** *Complex steps* in large neighborhoods = variable-length sequences of *simple steps* in small neighborhood.
- Use various *feasibility restrictions* on selection of simple search steps to limit time complexity of constructing complex steps.
- Perform Iterative Improvement w.r.t. complex steps.

Variable Depth Search (VDS):

determine initial candidate solution *s* while *s* is not locally optimal **do**

```
\begin{split} \hat{t} &:= s \\ \textbf{repeat} \\ & \quad \text{select best feasible neighbor } t \text{ of } \hat{t} \\ & \quad \textbf{if } f(t) < f(\hat{t}) \text{ then} \\ & \quad \hat{t} := t \\ & \quad s := \hat{t} \end{split}
```

until construction of complex step has been completed;

VLSN for the Traveling Salesman Problem

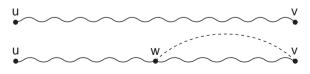
- k-exchange heuristics
 - 2-opt [Flood, 1956, Croes, 1958]
 - 2.5-opt or 2H-opt
 - Or-opt [Or, 1976]
 - 3-opt [Block, 1958]
 - *k*-opt [Lin 1965]
- complex neighborhoods
 - Lin-Kernighan [Lin and Kernighan, 1965]
 - Helsgaun's Lin-Kernighan
 - Dvnasearch
 - Ejection chains approach

Variable Depth Search

Election Chains Dynasearch Weighted Matching Neighborhoo Cyclic Exchange Neighborhoods

The Lin-Kernighan (LK) Algorithm for the TSP (1)

- Complex search steps correspond to sequences of 2-exchange steps and are constructed from sequences of Hamiltonian paths
- δ -path: Hamiltonian path p+1 edge connecting one end of p to interior node of p



Basic LK exchange step:

• Start with Hamiltonian path (u, \ldots, v) :

• Obtain δ -path by adding an edge (v, w):

• Break cycle by removing edge (w, v'):

 Note: Hamiltonian path can be completed into Hamiltonian cycle by adding edge (v', u):

Construction of complex LK steps:

start with current candidate solution (Hamiltonian cycle) s;
 set t* := s;
 set p := s

- 2. obtain δ -path p' by replacing one edge in p
- consider Hamiltonian cycle t obtained from p by (uniquely) defined edge exchange
- 4. if $w(t) < w(t^*)$ then set $t^* := t$; p := p'; go to step 2 else accept t^* as new current candidate solution s

Note: This can be interpreted as sequence of 1-exchange steps that alternate between δ -paths and Hamiltonian cycles.

Mechanisms used by LK algorithm:

- Pruning exact rule: If a sequence of numbers has a positive sum, there is a cyclic permutation of these numbers such that every partial sum is positive.
 - → need to consider only gains whose partial sum remains positive
- Tabu restriction: Any edge that has been added cannot be removed and any edge that has been removed cannot be added in the same LK step.
 - Note: This limits the number of simple steps in a complex LK step.
- Limited form of backtracking ensures that local minimum found by the algorithm is optimal w.r.t. standard 3-exchange neighborhood
- (For further details, see original article)

Cyclic Exchange Neighborhoods

Graph Partitioning

Graph Partitioning

Given: G = (V, E), weighted function $\omega : V \to \mathbb{R}$, a positive number $p: 0 < w_i \le p, \forall i$ and a connectivity matrix $C = [c_{ij}] \in \mathbb{R}^{|V| \times |V|}$.

Task: A *k*-partition of *G*, V_1, V_2, \ldots, V_k : $\bigcup_{i=1}^n V_i = G$ such that:

- it is admissible, ie, $|V_i| \le p$ for all i and
- it has minimum cost, ie, the sum of c_{ij} , i,j that belong to different subsets is minimal

- Focus on 2-way partitions in sets A and B of equal size (n + n)
- For each $a \in A$: external cost, $E_a = \sum_{b \in B} c_{ab}$; internal cost: $I_a = \sum_{c \in A} c_{ac}$ For each $z \in S$: $D_z = E_z I_z$
- Interchange of a and b has gain: $g_{ab} = D_a + D_b 2c_{ab}$
- Select a_1^* and b_1^* with maximum gain.
- Recalculate the D values for elements of $A \setminus \{a_1\}$ and $B \setminus \{b_1\}$:

$$D'_y = D_y + 2c_{ya_1} - 2c_{yb_1} \text{ for } y \in A \setminus \{a_1\}$$

$$D'_x = D_x + 2c_{xb_1} - 2c_{xa_1} \text{ for } x \in B \setminus \{b_1\}$$

- Repeat the last two steps conditional to the previous until all vertices are swapped.
- Since $\sum g_i = 0$ then there is an interestion k that maximizes the partial sum $\sum_{i=1}^k g_i = G$
- If G > 0 then make the change, if G = 0 then we are in a local optimum.

Outline

- 1. Variable Depth Search
- 2. Ejection Chains
- 3. Dynasearch
- 4. Weighted Matching Neighborhoods
- 5. Cyclic Exchange Neighborhoods

Ejection Chains

- Attempt to use large neighborhoods without examining them exhaustively
- Sequences of successive steps each influenced by the precedent and determined by myopic choices
- Limited in length
- Local optimality in the large neighborhood is not guaranteed.

Example (on TSP):

successive 2-exchanges where each exchange involves one edge of the previous exchange

Example (on GCP):

successive 1-exchanges: a vertex v_1 changes color from $\varphi(v_1)=c_1$ to c_2 , in turn forcing some vertex v_2 with color $\varphi(v_2)=c_2$ to change to another color c_3 (which may be different or equal to c_1) and again forcing a vertex v_3 with color $\varphi(v_3)=c_3$ to change to color c_4 .

Outline

- 1. Variable Depth Search
- 2. Ejection Chains
- 3. Dynasearch
- 4. Weighted Matching Neighborhoods
- 5. Cyclic Exchange Neighborhoods

Given: a set of n jobs $\{J_1, \ldots, J_n\}$ to be processed on a single machine and for each job J_i a processing time p_i , a weight w_i and a due date d_i .

Task: Find a schedule that minimizes the total weighted tardiness $\sum_{i=1}^{n} w_i \cdot T_i$ where $T_i = \max\{C_i - d_i, 0\}$ (C_i completion time of job J_i)

Example:

Job	J_1	J_2	J_3	J_4	J_5	J_6
Processing Time	3	2	2	3	4	3
Due date	6	13	4	9	7	17
Weight	2	3	1	5	1	2
Sequence	$\phi = J$	$J_3, J_1,$	J_5, J_5	J_{1}	J_6	
Joh Ja	J_1	JE	Ja	Ja	Ja	-

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		3, -1,	-3,	-, -1, -	- 0
Job	J_3	J_1	J_5	J_4	J_2	J_6
C_i	2	5	9	12	14	17
T_i	0	0	2	3	1	0
$w_i \cdot T_i$	0	0	2	15	3	0

Single Machine Total Weighted Tardiness Problem

- Interchange: size $\binom{n}{2}$ and O(|i-j|) evaluation each
 - first-improvement: π_i, π_k

$$p_{\pi_j} \leq p_{\pi_k}$$
 for improvements, $w_j T_j + w_k T_k$ must decrease because jobs in π_j, \ldots, π_k can only increase their tardiness.

$$p_{\pi_i} \geq p_{\pi_k}$$
 possible use of auxiliary data structure to speed up the computation

• best-improvement: π_i, π_k

 $p_{\pi_j} \leq p_{\pi_k}$ for improvements, $w_j T_j + w_k T_k$ must decrease at least as the best interchange found so far because jobs in π_j, \ldots, π_k can only increase their tardiness.

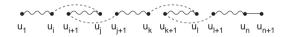
$$p_{\pi_j} \geq p_{\pi_k}$$
 possible use of auxiliary data structure to speed up the computation

- Swap: size n-1 and O(1) evaluation each
- Insert: size $(n-1)^2$ and O(|i-j|) evaluation each But possible to speed up with systematic examination by means of swaps: an interchange is equivalent to |i-j| swaps hence overall examination takes $O(n^2)$

Dynasearch

- Iterative improvement method based on building complex search steps from combinations of mutually independent search steps
- Mutually independent search steps do not interfere with each other wrt effect on evaluation function and feasibility of candidate solutions.

Example: Independent 2-exchange steps for the TSP:



Therefore: Overall effect of complex search step = sum of effects of constituting simple steps; complex search steps maintain feasibility of candidate solutions.

• **Key idea:** Efficiently find optimal combination of mutually independent simple search steps using *Dynamic Programming*.

Dynasearch for SMTWTP

- two interchanges δ_{jk} and δ_{lm} are independent if $\max\{j,k\} < \min\{l,m\}$ or $\min\{j,k\} > \max\{l,m\}$;
- the dynasearch neighborhood is obtained by a series of independent interchanges;
- it has size $2^{n-1} 1$ (the number of subsets of n-1 positions, the *n*th position involvement being decided consequently and minus 1 because of the case of no change);
- but a best move can be found in $O(n^3)$ searched by dynamic programming;
- it yields in average better results than the interchange neighborhood alone.

Ejection	Chains
Dynasea	rch
Weighte	d Matching Neighborho
Cyclic Ex	change Neighborhoods
-,	

Variable Depth Search

Table 1 Data for the Problem Instance								
Job j	1	2	3	4	5	6		
Processing time p_i	3	1	1	5	1	5		
Weight w,	3	5	1	1	4	4		
Due date d_j	1	5	3	1	3	1		

' /	0				-		
d _j	1	5	3	1	3		
Table 2	Swaps Made by Best-Improve Descent						
				Total We			
Iteration	Curren	t Sequence		Tardin	ess		
	12	3456		109			
1	12	3546		90			
2	12	3564		75			
3	5 2	3164		70			
Table 3	Dynasearch Sw	aps					
				Total Wei	ghted		
Iteration	Currer	nt Sequence		Tardin	ess		
	1.2	3 4 5 6		109			
1	13	2546		89			
2	1,5	2364		68			
3	5 1	2 3 6 4		67			

- state (k,π)
- π_k is the partial sequence at state (k,π) that has min $\sum_i w_i T_i$
- π_k is obtained from state (i, π)

$$\begin{cases} \text{appending job } \pi(k) \text{ after } \pi(i) & i = k-1 \\ \text{appending job } \pi(k) \text{ and interchanging } \pi(i+1) \text{ and } \pi(k) & 0 \leq i < k-1 \end{cases}$$

• $F(\pi_0) = 0$; $F(\pi_1) = W_{\pi(1)} (p_{\pi(1)} - d_{\pi(1)})^+$;

$$F(\pi_{k}) = \min \begin{cases} F(\pi_{k-1}) + w_{\pi(k)} \left(C_{\pi(k)} - d_{\pi(k)} \right)^{+}, \\ \min \left\{ F(\pi_{i}) + w_{\pi(k)} \left(C_{\pi(i)} + p_{\pi(k)} - d_{\pi(k)} \right)^{+} + \sum_{j=i+2}^{k-1} w_{\pi(j)} \left(C_{\pi(j)} + p_{\pi(k)} - p_{\pi(i+1)} - d_{\pi(j)} \right)^{+} + w_{\pi(i+1)} \left(C_{\pi(k)} - d_{\pi(i+1)} \right)^{+} \right\} \end{cases}$$

- The best choice is computed by recursion in $O(n^3)$ and the optimal series of interchanges for $F(\pi_n)$ is found by backtrack.
- Local search with dynasearch neighborhood starts from an initial sequence, generated by ATC, and at each iteration applies the best dynasearch move, until no improvement is possible (that is, $F(\pi_n^t) = F(\pi_n^{(t-1)})$, for iteration t).
- Speedups:
 - pruning with considerations on $p_{\pi(k)}$ and $p_{\pi(i+1)}$
 - maintainig a string of late, no late jobs
 - h_t largest index s.t. $\pi^{(t-1)}(k) = \pi^{(t-2)}(k)$ for $k = 1, \ldots, h_t$ then $F(\pi_k^{(t-1)}) = F(\pi_k^{(t-2)})$ for $k = 1, \ldots, h_t$ and at iter t no need to consider $i < h_t$.

Dynasearch, refinements:

- [Grosso et al. 2004] add insertion moves to interchanges.
- [Ergun and Orlin 2006] show that dynasearch neighborhood can be searched in $O(n^2)$.

Performance:

- exact solution via branch and bound feasible up to 40 jobs [Potts and Wassenhove, Oper. Res., 1985]
- exact solution via time-indexed integer programming formulation used to lower bound in branch and bound solves instances of 100 jobs in 4-9 hours [Pan and Shi, Math. Progm., 2007]
- dynasearch: results reported for 100 jobs within a 0.005% gap from optimum in less than 3 seconds [Grosso et al., Oper. Res. Lett., 2004]

Outline

- 1. Variable Depth Search
- 2. Ejection Chains
- 3. Dynasearch
- 4. Weighted Matching Neighborhoods
- 5. Cyclic Exchange Neighborhoods

Weighted Matching Neighborhoods

- **Key idea** use basic polynomial time algorithms, example: weighted matching in bipartied graphs, shortest path, minimum spanning tree.
- Neighborhood defined by finding a minimum cost matching on a (bipartite) improvement graph

Example (TSP)

Neighborhood: Eject k nodes and reinsert them optimally

Outline

- 1. Variable Depth Search
- 2. Ejection Chains
- 3. Dynasearch
- 4. Weighted Matching Neighborhoods
- 5. Cyclic Exchange Neighborhoods

Cyclic Exchange Neighborhoods

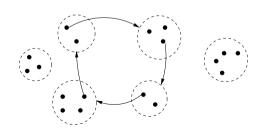
- Possible for problems where solution can be represented as form of partitioning
- Definition of a neighborhood search problem in a partitioning problem ($\min_{T_i \in \mathcal{T}} \sum_{i=1}^{K} c(T_i)$):

Given: a set W of n elements, a collection $\mathcal{T} = \{T_1, T_2, \dots, T_k\}$ of subsets of W, such that $W = T_1 \cup \ldots \cup T_k$ and $T_i \cap T_i = \emptyset$, and a cost function $c : \mathcal{T} \to \mathbb{R}$:

Task: Find a partition \mathcal{T}' of \hat{W} by means of single exchanges between the sets such that

$$c(\mathcal{T}') < c(\mathcal{T})$$

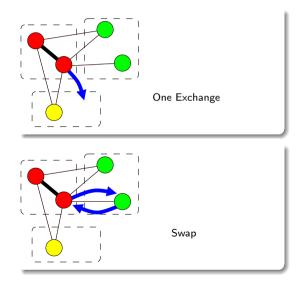
Cyclic exchange:

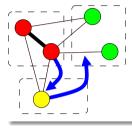


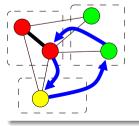
Neighborhood search

- Define an improvement graph
- Solve the relative
 - Subset Disjoint Negative Cost Cycle Problem
 - Subset Disjoint Minimum Cost Cycle Problem

Example (GCP)
Neighborhood Structures: Very Large Scale Neighborhood





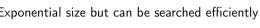


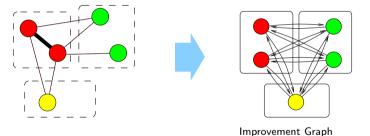
Cyclic Exchange

Example (GCP)

Examination of the Very Large Scale Neighborhood

Exponential size but can be searched efficiently





A Subset Disjoint Negative Cost Cycle Problem in the Improvement Graph can be solved by dynamic programming in $\mathcal{O}(|V|^2 2^k |D'|)$.

Yet, heuristic rules can be adopted to reduce the complexity to $\mathcal{O}(|V'|^2)$

```
Procedure SDNCC(G'(V', D'))
Let \mathcal{P} all negative cost paths of length 1, Mark all paths in \mathcal{P} as untreated Initialize the best cycle g^* = 0 and g^* = 0
```

Initialize the best cycle $q^* = ()$ and $c^* = 0$ for all $p \in \mathcal{P}$ do

if
$$(e(p), s(p)) \in D'$$
 and $c(p) + c(e(p), s(p)) < c^*$ then q^* = the cycle obtained by closing p and $c^* = c(q^*)$

while $\mathcal{P} \neq \emptyset$ do

Let $\widehat{\mathcal{P}} = \mathcal{P}$ be the set of untreated paths

for all $p' \in \mathcal{P}$ subject to w(p') = w(p), s(p') = s(p), e(p') = e(p) **do**Remove from \mathcal{P} the path of higher cost between p and p'

return a minimal negative cost cycle q^* of cost c^*