DM841 (10 ECTS - E23)

Heuristics and Constraint Programming for Discrete
Optimization

[Heuristikker og Constraint Programmering for Diskret Optimering]

Marco Chiarandini, Asc Prof, IMADA
imada.sdu.dk/~marco

Video (14 min): https://imada.sdu.dk/~marco/Videos/dm841 .mp4

imada.sdu.dk/~marco
https://imada.sdu.dk/~marco/Videos/dm841.mp4

Course Formalities

Target students: computer science, applied math, math and economics and data
science
at 3rd semester (but challenging) or 5th semester of Bachelor
degree or at Master level

Prerequisites: v/ Programming (Java or Python)

Decision Problems with Discrete Variables

Social Golfer Problem (Combinatorial Design)

Group 1 | Group 2 | Group 3
Day 0 7?7 7?7 7?7
Day 1 7?7 7?77? 1?7
Day 2 7?7 7?7 7?7
Day 3 7?7 7?72 7?7

» 9 golfers: 1,2,3,4,5,6,7,8,9

» wish to play in groups of 3 players in 4 days

» such that no golfer plays in the same group with any other golfer more than just once.
Is it possible?

Solution Paradigms

v

Dedicated algorithms
(eg.: enumeration, branch and bound, dynamic programming)

v

Integer Linear Programming (DM871/DM545)

» Constraint Programming:
representation (modeling) + reasoning (search + inference)

A\

Heuristics & Metaheuristics
representation (modeling) + reasoning (search)

v

Others (SAT, SMT, etc.)

Constraint Programming
Modeling

Modelling in MIP and SAT Modelling in CP

34
R 3

Constraint Programming

Modeling
Golfers Groups

Group 1 | Group 2 | Group 3 Day 0 | Dayl | Day2 | Day 3
Day 0 277 272 277 D O i il (e
Day 1 777 272 277 R T A b i
Goéfef 1 |{1.2,3}[{1,2,3}[{1.2,3}

Day 2 777 7772 777 Golfer
3 {23} [{1.2,3}|{1,2,3}|{1,2,3}
Day 3 777 7?7? 777 GOEEF {2,3} |{1.2.3}|{1.2,3}|{1.2,3}
GOgEF {2,3} |{1.2.3}|{1.2.3}|{1.2,3}
GOgEf {2,3} |{1,2,3}|{1,2,3}|{1.2,3}
G°;fer {2,3} |{1.2.3}|{1.2.3}|{1.2.,3}
Integer variables: o8 | @3y [n23t 023|123

assign[i, j] variable whose value is from the domain {1,2,3}
Constraints:
C1: each group has exactly groupSize players

C2: each pair of players only meets once

Constraint Programming
MiniZinc Model with Integer Variables

int: golfers = 9;
int: groupSize =
int: days = 4;

int: groups = golfers/groupSize;

3;

set of int: Golfer = 1..golfers;
set of int: Day = 1..days;
set of int: Group = 1l..groups;

array[Golfer, Day] of var Group: assign; % Variables

constraint
% Cl: Each group has exactly groupSize players
forall (gr in Group, d in Day) (% cl
sum (g in Golfer) (bool2int (assign[g,d] = gr)) = groupSize
)
/\
% C2: Each pair of players only meets at most once
forall (gl, g2 in Golfer, dl, d2 in Day where gl != g2 /\ dl != d2)
(bool2int (assign[gl,dl] = assign[g2,dl]) + bool2int (assign[gl,d2] =
)i

solve :: int_search([assign[i,j] | i in Golfer, j in Day],
first_fail, indomain min, complete) satisfy;

(
assign[g2,d2])) <=1

Constraint Programming

The solution process proceeds by propagating the constraints on the domanins of the
variables (ie, removing values) and tentatively assigning variables until only feasible values
are left.

Local Search
Modeling

Group | Group | Group

1 2 3

Day O 012 345 678
Day 1 046 | 137 | 258
Day 2 048 | 156 | 237
Day 3 057 | 138 | 246

» Variables = solution representation, tentative solution

» Constraints:
> implicit
> soft

» Evaluation function

Local Search

Solution: Trial and Error

Group | Group | Group
1 2 3

Day O 012 | 345 | 678

Day 1 046 137 258

Day 2 048 | 156 237

Day 3 057 | 138 246

Heuristic algorithms: compute, efficiently, good solutions to a problem (without caring for
theoretical guarantees on running time and approximation quality).

Local Search

Solution process: local changes

Example on Traveling Salesman Problem:

Metaheuristics

Accepting worsening changes

Trying different changes

M

Contents: Constraint Programming

» Modelling and Applications
Integer variables, set variables, float variables, constraints

» Principles
Consistency levels

» Filtering Algorithms
Alldifferent, cardinality, regular expressions, etc.

» Search:
Backtracking, Strategies

» Symmetry Breaking
» Restart Techniques

» CP Systems: Minizinc

Contents: Heuristics

» Construction Heuristics
» Local Search

» Metaheuristics

» Simulated Annealing

Iterated Local Search

Tabu Search

Variable Neighborhood Search
Evolutionary Algorithms

Ant Colony Optimization

VVyVYVYY

» Programming
(Python)

Aims & Contents

modeling discrete optimization problems with constraint programming
design heuristic algorithms

implement the algorithms

assess the programs

describe with appropriate language

vV vyVvyVvyVvyy

look at different problems

Assessment (10 ECTYS)

Five obligatory assignments:
» individual

» deliverables: program + short written report

» Two graded with external censor,
final grade given by weighted average

DM841 (10 ECTS - E23)

Heuristics and Constraint Programming for Discrete
Optimization

[Heuristikker og Constraint Programmering for Diskret Optimering]

Marco Chiarandini, Asc Prof, IMADA
imada.sdu.dk/~marco

Video (14 min): https://imada.sdu.dk/~marco/Videos/dm841 .mp4

imada.sdu.dk/~marco
https://imada.sdu.dk/~marco/Videos/dm841.mp4

