DM841 (10 ECTS - E23)

Heuristics and Constraint Programming for Discrete Optimization

[Heuristikker og Constraint Programmering for Diskret Optimering]

Marco Chiarandini, Asc Prof, IMADA imada.sdu.dk/~marco

Video (14 min): https://imada.sdu.dk/~marco/Videos/dm841.mp4

Course Formalities

Target students:	computer science, applied math, math and economics and data
	science at 3rd semester (but challenging) or 5th semester of Bachelor degree or at Master level

Prerequisites:

Programming (Java or Python)

Decision Problems with Discrete Variables

Social Golfer Problem (Combinatorial Design)

	Group 1	Group 2	Group 3
Day 0	???	???	???
Day 1	???	???	???
Day 2	???	???	???
Day 3	???	???	???

- ▶ 9 golfers: 1, 2, 3, 4, 5, 6, 7, 8, 9
- wish to play in groups of 3 players in 4 days

such that no golfer plays in the same group with any other golfer more than just once. Is it possible?

Solution Paradigms

- Dedicated algorithms (eg.: enumeration, branch and bound, dynamic programming)
- Integer Linear Programming (DM871/DM545)
- Constraint Programming:

representation (modeling) + reasoning (search + inference)

Heuristics & Metaheuristics

representation (modeling) + reasoning (search)

▶ Others (SAT, SMT, etc.)

Modeling

Modelling in MIP and SAT

Modelling in CP

Modeling

Golfers

	Group 1	Group 2	Group 3
Day 0	???	???	???
Day 1	???	???	???
Day 2	???	???	???
Day 3	???	???	???

Groups

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 1	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 2	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 3	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}

Integer variables:

assign[i,j] variable whose value is from the domain $\{1,2,3\}$

Constraints:

- $\begin{tabular}{ll} C1: each group has exactly groupSize players \\ \end{tabular}$
- C2: each pair of players only meets once

MiniZinc Model with Integer Variables

```
int: golfers = 9;
int: groupSize = 3;
int: days = 4;
int: groups = golfers/groupSize;
set of int: Golfer = 1..golfers;
set of int: Day = 1..days;
set of int: Group = 1..groups;
array[Golfer, Dav] of var Group: assign; % Variables
constraint
 % C1: Each group has exactly groupSize players
  forall (gr in Group, d in Day) ( % c1
  sum (g in Golfer) (bool2int(assign[g,d] = gr)) = groupSize
  )
  \Lambda
  % C2: Each pair of players only meets at most once
  forall (g1, g2 in Golfer, d1, d2 in Day where g1 != g2 /\ d1 != d2) (
   (bool2int(assign[g1,d1] = assign[g2,d1]) + bool2int(assign[g1,d2] = assign[g2,d2])) <=1
  );
solve :: int search([assign[i, j] | i in Golfer, j in Day ],
                   first fail, indomain min, complete) satisfy:
```


The solution process proceeds by propagating the constraints on the domanins of the variables (ie, removing values) and tentatively assigning variables until only feasible values are left.

Local Search

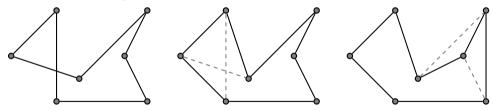
Modeling

	Group 1	Group 2	Group 3
Day 0	012	345	678
Day 1	0 4 6	1 3 7	258
Day 2	0 4 8	156	2 3 7
Day 3	057	138	246

- ▶ Variables = solution representation, tentative solution
- Constraints:
 - implicit
 - soft
- Evaluation function

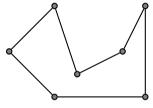
Local Search

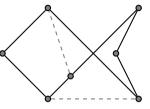
Solution: Trial and Error

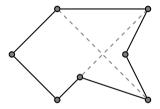

	Group 1	Group 2	Group 3
Day 0	012	345	678
Day 1	0 4 6	1 3 7	258
Day 2	0 4 8	156	2 3 7
Day 3	057	138	246

Heuristic algorithms: compute, efficiently, good solutions to a problem (without caring for theoretical guarantees on running time and approximation quality).

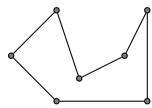
Local Search

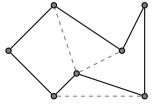

Solution process: local changes

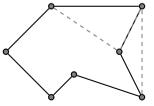

Example on Traveling Salesman Problem:



Metaheuristics


Accepting worsening changes





Trying different changes

Contents: Constraint Programming

- Modelling and Applications Integer variables, set variables, float variables, constraints
- Principles Consistency levels
- Filtering Algorithms Alldifferent, cardinality, regular expressions, etc.
- Search: Backtracking, Strategies
- Symmetry Breaking
- Restart Techniques
- CP Systems: Minizinc

Contents: Heuristics

- Construction Heuristics
- Local Search
- Metaheuristics
 - Simulated Annealing
 - Iterated Local Search
 - Tabu Search
 - Variable Neighborhood Search
 - Evolutionary Algorithms
 - Ant Colony Optimization
- Programming (Python)

Aims & Contents

- modeling discrete optimization problems with constraint programming
- design heuristic algorithms
- implement the algorithms
- assess the programs
- describe with appropriate language
- look at different problems

Assessment (10 ECTS)

Five obligatory assignments:

- individual
- deliverables: program + short written report
- Two graded with external censor, final grade given by weighted average

DM841 (10 ECTS - E23)

Heuristics and Constraint Programming for Discrete Optimization

[Heuristikker og Constraint Programmering for Diskret Optimering]

Marco Chiarandini, Asc Prof, IMADA imada.sdu.dk/~marco

Video (14 min): https://imada.sdu.dk/~marco/Videos/dm841.mp4