
D
M
87
7
–
C
on

st
ra
in
t
P
ro
gr
am

m
in
g

DM841 (10 ECTS - E23)

Heuristics and Constraint Programming for Discrete
Optimization

[Heuristikker og Constraint Programmering for Diskret Optimering]

Marco Chiarandini, Asc Prof, IMADA
imada.sdu.dk/~marco

Video (14 min): https://imada.sdu.dk/~marco/Videos/dm841.mp4

imada.sdu.dk/~marco
https://imada.sdu.dk/~marco/Videos/dm841.mp4

D
M
87
7
–
C
on

st
ra
in
t
P
ro
gr
am

m
in
g

Course Formalities

Target students: computer science, applied math, math and economics and data
science
at 3rd semester (but challenging) or 5th semester of Bachelor
degree or at Master level

Prerequisites: " Programming (Java or Python)

D
M
87
7
–
C
on

st
ra
in
t
P
ro
gr
am

m
in
g

Decision Problems with Discrete Variables

Social Golfer Problem (Combinatorial Design)

I 9 golfers: 1, 2, 3, 4, 5, 6, 7, 8, 9
I wish to play in groups of 3 players in 4 days
I such that no golfer plays in the same group with any other golfer more than just once.

Is it possible?

D
M
87
7
–
C
on

st
ra
in
t
P
ro
gr
am

m
in
g

Solution Paradigms

I Dedicated algorithms
(eg.: enumeration, branch and bound, dynamic programming)

I Integer Linear Programming (DM871/DM545)

I Constraint Programming:
representation (modeling) + reasoning (search + inference)

I Heuristics & Metaheuristics
representation (modeling) + reasoning (search)

I Others (SAT, SMT, etc.)

D
M
87
7
–
C
on

st
ra
in
t
P
ro
gr
am

m
in
g

Constraint Programming
Modeling

Modelling in MIP and SAT Modelling in CP

D
M
87
7
–
C
on

st
ra
in
t
P
ro
gr
am

m
in
g

Constraint Programming
Modeling

Golfers

Integer variables:
assign[i,j] variable whose value is from the domain {1, 2, 3}

Constraints:
C1: each group has exactly groupSize players
C2: each pair of players only meets once

D
M
87
7
–
C
on

st
ra
in
t
P
ro
gr
am

m
in
g

Constraint Programming
MiniZinc Model with Integer Variables� �

int: golfers = 9;
int: groupSize = 3;
int: days = 4;
int: groups = golfers/groupSize;

set of int: Golfer = 1..golfers;
set of int: Day = 1..days;
set of int: Group = 1..groups;

array[Golfer, Day] of var Group: assign; % Variables

constraint
% C1: Each group has exactly groupSize players
forall (gr in Group, d in Day)(% c1
sum (g in Golfer) (bool2int(assign[g,d] = gr)) = groupSize

)
/\
% C2: Each pair of players only meets at most once
forall (g1, g2 in Golfer, d1, d2 in Day where g1 != g2 /\ d1 != d2) (
(bool2int(assign[g1,d1] = assign[g2,d1]) + bool2int(assign[g1,d2] = assign[g2,d2])) <=1

);

solve :: int_search([assign[i,j] | i in Golfer, j in Day],
first_fail, indomain_min, complete) satisfy;� �

D
M
87
7
–
C
on

st
ra
in
t
P
ro
gr
am

m
in
g

Constraint Programming

The solution process proceeds by propagating the constraints on the domanins of the
variables (ie, removing values) and tentatively assigning variables until only feasible values
are left.

D
M
87
7
–
C
on

st
ra
in
t
P
ro
gr
am

m
in
g

Local Search
Modeling

I Variables = solution representation, tentative solution

I Constraints:
I implicit
I soft

I Evaluation function

D
M
87
7
–
C
on

st
ra
in
t
P
ro
gr
am

m
in
g

Local Search
Solution: Trial and Error

Heuristic algorithms: compute, efficiently, good solutions to a problem (without caring for
theoretical guarantees on running time and approximation quality).

D
M
87
7
–
C
on

st
ra
in
t
P
ro
gr
am

m
in
g

Local Search
Solution process: local changes

Example on Traveling Salesman Problem:

D
M
87
7
–
C
on

st
ra
in
t
P
ro
gr
am

m
in
g

Metaheuristics

Accepting worsening changes

Trying different changes

D
M
87
7
–
C
on

st
ra
in
t
P
ro
gr
am

m
in
g

Contents: Constraint Programming

I Modelling and Applications
Integer variables, set variables, float variables, constraints

I Principles
Consistency levels

I Filtering Algorithms
Alldifferent, cardinality, regular expressions, etc.

I Search:
Backtracking, Strategies

I Symmetry Breaking

I Restart Techniques

I CP Systems: Minizinc

D
M
87
7
–
C
on

st
ra
in
t
P
ro
gr
am

m
in
g

Contents: Heuristics

I Construction Heuristics

I Local Search

I Metaheuristics
I Simulated Annealing
I Iterated Local Search
I Tabu Search
I Variable Neighborhood Search
I Evolutionary Algorithms
I Ant Colony Optimization

I Programming
(Python)

D
M
87
7
–
C
on

st
ra
in
t
P
ro
gr
am

m
in
g

Aims & Contents

I modeling discrete optimization problems with constraint programming
I design heuristic algorithms
I implement the algorithms
I assess the programs
I describe with appropriate language
I look at different problems

D
M
87
7
–
C
on

st
ra
in
t
P
ro
gr
am

m
in
g

Assessment (10 ECTS)

Five obligatory assignments:

I individual
I deliverables: program + short written report
I Two graded with external censor,

final grade given by weighted average

D
M
87
7
–
C
on

st
ra
in
t
P
ro
gr
am

m
in
g

DM841 (10 ECTS - E23)

Heuristics and Constraint Programming for Discrete
Optimization

[Heuristikker og Constraint Programmering for Diskret Optimering]

Marco Chiarandini, Asc Prof, IMADA
imada.sdu.dk/~marco

Video (14 min): https://imada.sdu.dk/~marco/Videos/dm841.mp4

imada.sdu.dk/~marco
https://imada.sdu.dk/~marco/Videos/dm841.mp4

