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DM841 - Constraint Programming

Exercises, Autumn 2023

Exercise 1 — Modelling
Show that CSP generalizes SAT formulating the following SAT problem as a CSP:

xVyV-az)A(-wV-z)A(wV-yV2)

Viceversa, show how to encode CSPs in SAT.

Solution

Variables: {w(x1), x(x2), y(x3), z(x4)}

Domains: D(x1) = D(x2) = D(x3) = D(x4) = {false, true} = {0,1}

Constraints: C = {C(x2, x3, x4) = x2V x3V =xs; C(x1, xa) = ~x1V =xa; C(x1, X2, X4) = x1V x371x4 }
In Gecode:

clause(*this, BOT_OR, positives, negatives, 1);

See examples/sat.cpp.
The constraints can be also written as 0-1 linear inequalities of the form a”x > ag Let ~x =
x=1-x:

X2+ x3+ x4 > 1 X2+ x3+ x4 > 1
T—x1+1—=—x4>1 X1+ x4 <1
x1+1—x3+x4>1 X1 —x3+x4 >0

SAT Encodings of CSP:

There are several ways of translating finite-domain CSP into SAT problems. Three main en-
codings are the sparse encoding, the order encoding and the log encoding. For details you are
referred to [2]. In Minizinc they are called value, unary and binary, respectively.

Exercise 2 - Binary CSP
Show how an arbitrary (non-binary) CSP can be polynomially converted into an equivalent
binary CSP.

Solution This can be done in two ways. (see fx [1])

For an example CSP with: X = x1, x2, x3, x4, x5, X6, D(x;) = {0,1} Vi = 1..6 and C made of:

Ci:xi+x2+x5 =1
G:ixp—x3+x4 =1
G:xa+x5—x6>0
Ch:xo+x5—x5=0

the equivalent binary CSP is shown in Figs. 1 and 2.
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Vi V4
(0,0,1), (0,1,0), R21 & R33 (0,0,1), (0,1,0),
(1,0,0) (1,0,0)

R11 R33 R22 & R33

V2 V3
(0,0,1), (0,1,0), (0,0,1), (0,1,0),
(1,0,0) R31 (1,0,0)

Figure 1: Dual encoding

(0,0,1), (0,1,0), (0,0,1), (0,1,0),
(1,0,0) v (1,0,0) Ve
r3 rl
/Ii—’/ - <
0.1 X 0,1 X2 0,1 X3 0,1 x4 0,1 Xs 0.1 X5
o r2 = rl r2 3
(0,0,1), (0,1,0), (0,0,1), (0,1,0),
(1.0.0) V2 (1,0.0) V3

Figure 2: Hidden variables encoding

Exercise 3 — Domain-based tightenings

Given two CSP, P and P/, we write P’ < P iff any instantiation / on Y C Xp locally inconsistent
in P is locally inconsistent in P” as well.

Consider the following CSP:

P = (X = {xy},DE = {D(x) = {1,2,3}, Dly) = {1,2,3}},0)

Construct two domain tightenings P_1 and P2 of P (a domain tightening is P’ such that
X P' = X_P, D& C DE,C_P" = C_P) for which neither the relation P < P’ holds nor P’ < P
(which shows that domain tightenings establish a partial order and not a total order amond
the problems). Assume first that C admits any combination of values as valid. Then, consider
the case in which C = {x # y}. What does it change?

Solution A domain-tightening always gives a partial ordering since it is isomorphic with the

partial order C on DE.
For example:

Pr= (X = {x,y},DE = {Dx) = {1,2}, D(y) = {2.3}}
P2 = (X = {x.y},DE = {D(x) = {2,3}, Dly) = {2.3}}
Note that domain tightening is a well founded operation, that is, it has a last element (fixed
point) because finitely many variables and finitely many values.

The addition of the constraint x # y changes the possible tightenings that you might propose,
for example, the problem:

P3 = (X ={xy}, D€ = {D(x) = {1}, D(y) = {1}}
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would not be a tightening because it does not satisfy the requirement that any instantiation /
on Y C Xp locally inconsistent in P is locally inconsistent in Ps. For Y = {x, y} this does not
hold.

Exercise 4 — Local Consistency
Are the two following CSPs arc consistent:

o ({x=1,ye{0,1},ze{0,1}},xAy=2z)

Solution Yes. There exists a support for every value in every variable.

e ({xe{0,1},ye {01}, z=1};xAy=2z)

Solution No: x = 0 and y = 0 have no support

What happens to your answers if the constraint y # z is added to the set of constraints?

Solution The first problem remains arc consistent even though it is inconsistent. The

second problem can be discovered inconsistent after making the problem arc consistent
with respect to one of the two constraints.

Exercise 5 — Local Consistency

Consider the n-queens problem with n > 3 and its formulation as a binary CSP that uses the
least variables (that is, n variables that indicate the position of the queens, say, on the columns).
Is the initial status of this CSP problem arc consistent? If not, enforce arc consistency.

Solution the binary CSP that models the n-queens problem is

Variables: x1,...,x, with domain [1,...,n] whre x; represents the row position of the queen
placed in the ith column.

o xi#Fxjforie[l.n-1],jei+1.n]

o xi—xjFi—jforie[l.n—=1]jeli+1.n]

o xi—xjFj—iforie[l.n—=1]jeli+1.n]
It is arc consistent. Formally we need to analyse each constraint separately. Consider for
instance the constraint x; —x; # i — j with 1 < i < j < n and take a € [1..n]. Then there exists

b € [1..n] such that a — b # i — j: just take b € [1..n] that is different from a — i + j.
What about the non-binary formulation?

Exercise 6 — Propagation on paper

Consider an initial domain expression {x € {0,1,2,3},y € {0,1,2,3}} and two constraints
x <y and y < x. Apply the propagation algorithm Revise2001 from the lecture using pen and
paper.

Solution

Not normalized. If we normalize it we discover the problem is inconsitent.
However to apply the Revise2001 we proceed by calculating

Last[x, v, y]
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ie, the smallest support for (x, v) on y...
Note that bound arc consistency could be enforced faster for > with the rules:

D(x) « {n € D(x)|n < max[D(y)]}
D(y) < {n € D(y)|n > min[D(x)]}

Exercise 7 — Directed Arc Consistency

A form of weaker arc consistency is directed arc consistency, which enforces consistency only
in one direction. Decide if the following CSP (x € [2..10],y € [3..7], x < y) is directed arc
consistent in the case of linear ordering y < x and in the case x < y.

Exercise 8 — Crossword puzzle
Consider the crossword grid of the figure

and suppose we are to fill it with the words taken from the following list:

e HOSES, LASER, SAILS, SHEET, STEER,
e HEEL, HIKE, KEEL, KNOT, LINE,
e AFT, ALE, EEL, LEE, TIE.

Is the initial status of the formulated CSP arc consistent? If not, enforce arc consistency.

Solution

Domains: D(x1) = D(X2) = {HOSES, LASER, SAILS, SHEET, STEERY} etc.
Constraints: a constraint for each crossing. For positions 1 and 2:

Ci» :={(HOSES, SAILS), (HOSES, SHEET),
(HOSES, STEER), (LASER, SAILS),
(LASER, SHEET), (LASER, STEER)}.

It is not arc consistent: no word in D(x2) begins with letter |, so for the values SAILS for the
first variable no value for the second vairable exists such that the resulting pair satisfies the
considered constraint.

Apply AC to the constraint network. See figure 3.

Exercise 9 — Mathematical Proof of Tournament Ranking

A common approach to decide a winner in sport competitions is to run a tournament, in which
participants are grouped in one or more pools and have to play an equal number of matches
against opponents from the same or other pools. The winner is the participant that at the end
of the tournament occupies the first position in the standings list. (An alternative approach is to
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Figure 3:
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run a single-elimination tournament where the loser of each match is immediately eliminated
from winning the championship or the first prize in the event.)

Often the interest arises to prove mathematically whether after a number of rounds a parte-
cipant can still become the champion given its current standing and all matches still to play
in the tournament. For example, in football leagues the standing of a team is determined from
the results by summing 3 points for each match won, 1 point for each match draw and 0 points
for each match loss. Then, after a certain number of matches we may want to check whether a
team can still be the winner of the league. Alternatively one may check which is the highest
position that a team can reach.

Model this application as a CSP.

(Thanks to Anders Knudsen and Jan Christensen for providing the data)

Solution

Let x5, € {0,1,3} and x,; € {0,1,3} be the variables that indicate the points made on match
J J I

j by the home team and the away team, respectively.

Let y; € N be the total points made by team i.

e the constraints ensuring that the right amount of points is distrubted at each match are:
Clxnjixaj) ={(0,3),(3,0), (1, 1)} V)

alternatively, or redundant:
Xpj + Xaj = Z

where z € {2, 3} is an auxiliary variable.

e the linking between variables y and x:
yi = E (OinjXaj + Oiajxnj) Vi
j
where 9;5; and d;4; are binary parameters indicating whether the team i is the home team
or the away team on game j.

e to find the position in the standings: we introduce an array of auxiliary variables w that
will be the sorted version of y and an auxiliary vector z such that:

Yi = Wy
In gecode a global constraint takes care of this: sorted(y, w, z)
Alternatively, we could use reification:
yi >y byl #i
which in gecode is implemented by rel(y;, IRT_GE, yy, by).

For a given team i the objective will be to minimize z; or to maximize ), by.

A MIP model for solving the problem of finding the worst position of a team could be the
following: Let T indexed by i and j be the set of teams. Let S indexed by s be the set of all
matches, played and not yet played, and let K = {0, 1,3} be the set of possible points gained
in a match by a team. Let h(s) and a(s) be the home and away team of match s, respectively,
and let As = {(i, j)|i,j € T,i = h(s), j = a(s)} be the set of pairs of teams playing in s. For each
match s € S we define a binary variable xs;x for any of the two teams in As and for any point
gain k € K. We denote by t the reference team and we assume that variables corresponding
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to played matches are fixed. We assume that t looses all remaining matches and that ties are
broken at disadvantage of t. We also define the set B; C S to indicate the matches played by
team (.

min Z Wit (1)

St Xisk =1 Vie A, Vse S (2)
k
Xisk + Xsjk <1 —2zs Vk € {0,3},Y(i,j) € As, Vs € S (3)
Xs,i1 + Xs,j1 = 225 V(i,j) € As,Vs € S (4)
yi=) st +3)  Xsi3 Vie T,Vs e B (5)
j j
yi > yr— 3(n — Twy VieT (6)
yi >0 VieT (7)
xsik € {0,1} VkeK,ieAs,se S (8)
WUE{O,1} Vi,j,l'?éj (9)

Constraints 2 impose that exactly one of the three results is obtained by each team on each
game. Constraints 3 and 4 take care of linking the variables at each game. The auxilary binary
variables zs are used to represent a draw. Constraints 5 calculate the total points of the teams
and constraints 6 impose w;; to be 1 if the team i has a better position in the ranking than the
team j. The objective function 1 minimizes the number of teams that do worse than team t.
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