
Evaluation of parallel metaheuristics

Enrique Alba and Gabriel Luque

Grupo GISUM, Departamento de LCC
E.T.S.I. Informática

Campus Teatinos, 29071 Málaga (Spain)
{eat,gabriel}@lcc.uma.es

Abstract. When evaluating algorithms a very important goal is to perform better than the
state-of-the-art techniques.. This requires experimental tests to compare the new algorithm
with respect to the rest. It is, in general, hard to make fair comparisons between algorithms
such as metaheuristics. The reason is that we can infer di�erent conclusions from the same
results depending on the metrics we use and how they are applied. This is specially important
for non-deterministic methods. This analysis becomes more complex if the study includes
parallel metaheuristics, since many researchers are not aware of existing parallel metrics
and their meanings, especially concerning the vast literature on parallel programming used
well before metaheuristics were �rst introduced. In this paper, we focus on the evaluation of
parallel algorithms. We give a clear de�nition of the main parallel performance metrics and
we illustrate how they can be used.

1 Introduction

Most optimization tasks found in real world applications impose several constraints that usually
do not allow the utilization of exact methods. The complexity of these problems (often they are
NP-hard [1]) or the limited resources available to solve them (time, memory) have made the
development of metaheuristics a major �eld in operations research, computer science, and other
domains. In particular, parallel versions of metaheuristics have allowed to solve realistic scenarios
for industrial problems, since parallelism is an approach not only to reduce the run time but also
to improve the quality of the solutions [2].

Unlike exact methods, where time-e�ciency is a main measure for success, there are two chief
issues in evaluating parallel metaheuristics: how fast can solutions be obtained, and how far they
are from the optimum. Besides, we can distinguish between two di�erent approaches for analyzing
metaheuristics: a theoretical analysis (worst-case analysis, average-case analysis, ...) or an exper-
imental analysis. The di�culty of theoretical analysis on parallel metaheuristics makes hard to
obtain results for most realistic problems and algorithms, and severely limits their range of appli-
cation. As a consequence most of the metaheuristics are evaluated empirically in a ad-hoc manner.

In this paper, we focus on how the experiments should be performed, and how the results
should be reported in order to make fair comparisons when dealing with parallel metaheuristics.
We are interested in revising, proposing, and applying parallel performance metrics and guidelines
to ensure the correctness of our conclusions.

This paper is organized as follows. The next section summarizes some parallel metrics such as
speedup and related measures. Section 3 discusses some inadequate utilizations of parallel meta-
heuristics measures. In the following section, we perform several practical experiments to illustrate
the importance of a metric in the conclusions obtained. Finally, some remarks are outlined in
Section 5.

2 Parallel Performance Measures

There are di�erent metrics to measure the performance of parallel algorithms. In the �rst subsection
we discuss in detail the most common measure, i.e., the speedup, and address its meaningful
utilization in parallel metaheuristics. Later, in a second subsection we summarize other metrics
also found in the literature.



10 E. Alba, G. Luque

2.1 Speedup

The most important measure of a parallel algorithm is the speedup (and maybe its normalized
version: the e�ciency). This metric computes the ratio between sequential and parallel times.
Therefore, the de�nition of time is the �rst aspect we must face. In a uni-processor system, a
common performance is the CPU time to solve the problem; this is the time the processor spends
executing algorithm instructions. In the parallel case, time is not a sum of CPU times on each
processor, neither the largest among them. Since the objective of parallelism is the reduction of
the real-time, time should de�nitely include any incurred overhead because it is the price of using
a parallel algorithm. Hence the most prudent and spread choice for measuring the performance of
a parallel code is the wall-clock time to solve the problem at hands, as has been largely reported
for parallel programs in computer science.

The speedup compares the serial time against the parallel time to solve a particular problem.
If we denote with Tm the execution time for an algorithm using m processors, the speedup is the
ratio between the (greater) execution time on one processor T1 and the (smaller) execution time
on m processors Tm:

sm =
T1

Tm
(1)

For non-deterministic algorithms we cannot use this metric directly. For this kind of methods,
the speedup should instead compare the mean serial execution time against the mean parallel
execution time:

sm =
E[T1]

E[Tm]
(2)

With this de�nition we can distinguish among: sublinear speedup (sm < m), linear speedup
(sm = m), and superlinear speedup (sm > m). The main di�culty with that measure is that
researchers do not agree on the meaning of T1 and Tm. Several speedup taxonomies have been
proposed in the literature [3,4] For example, Alba [3] distinguishes between several de�nitions of
speedup depending of the meaning of these values (see Table 1).

Strong speedup (type I) compares the parallel run time against the best-so-far sequential algo-
rithm. This is the most exact de�nition of speedup, but, due to the di�culty of �nding the current
most e�cient algorithm in the world, most designers of parallel algorithms do not use it. Weak
speedup (type II) compares the parallel algorithm developed by a researcher against his/her own
serial version, a situation that is usually a�ordable in practice. In these two cases, two stopping
criteria for the algorithms could be used: solution quality or maximum e�ort. In addition, two vari-
ants of the weak speed with solution stop are possible: to compare the parallel algorithm against
the canonical sequential version (type II.A.1) or to compare the run time of the parallel algorithm
on one processor against the time of the same algorithm on m processors (type II.A.2).

Table 1. Taxonomy of speedup measures proposed by Alba [3].
I. Strong speedup
II. Weak speedup

A. Speedup with solution stop
1. Versus panmixia
2. Orthodox

B. Speed with prede�ned e�ort

Once we have a taxonomy, the open problem is to select a fair way of computing speedup.
Since it is supposed to measure the gains of using more processors, it is clear that the parallel
metaheuristic should compute a similar accuracy as the sequential one. Only in this case we are
allowed to compare times. Also, the used times are average run times: the parallel code on one



Evaluation of parallel metaheuristics 11

machine versus the parallel code on m machines. All this de�ne a sound way for comparisons, both
practical (no best algorithm needed) and orthodox (same codes, same accuracy). Currently, there
is not a common guidelines in performance measurements and researchers use di�erent metrics
or the same measures but di�erent meanings, so we will further illustrate the drawbacks of non
orthodox metrics in Section 3.

2.2 Other Parallel Metrics

Although the speedup is a widely used metric, there exist other measures of the performance of
a parallel metaheuristic. The e�ciency (Equation 3) is a normalization of the speedup (em = 1
means linear speedup).

em =
sm

m
(3)

Several variants of the e�ciency metric exist. For example, the incremental e�ciency (Equation
4) shows the fraction of time improvement got from adding another processor, and it is also much
used when the uni-processor times are unknown. This metric has been later generalized (Equation
5) to measure the improvement attained by increasing the number of processors from n to m.

iem =
(m − 1) · E[Tm−1]

m · E[Tm]
(4)

gien,m =
n · E[Tn]

m · E[Tm]
(5)

The previous metrics indicate the improvement coming from using additional processing ele-
ments, but they do not measure the utilization of the available memory. The scaleup addresses this
issue and allows to measure the full utilization of the hardware resources:

sum,n =
E[Tm,k]

E[Tnm,nk]
(6)

where E[Tm,k] is the mean run time needed by a platform with m processors to solve a task of size
k and E[Tnm,nk] is the mean run time needed by a platform with nm processors to solve a task
of size nk. Therefore, this metric measures the ability of the algorithm to solve a n-times larger
job on a n-times larger system in the same time as the original system. Therefore, linear speedup
occurs when sum,n = 1.

Finally, Karp and Flatt [5] have devised an interesting metric for measuring the performance
of any parallel algorithm that can help us to identify much more subtle e�ects than using speedup
alone. They call it the serial fraction of the algorithm (Equation 7).

fm =
1/sm − 1/m

1 − 1/m
(7)

Ideally, the serial fraction should stay constant for an algorithm. If a speedup value is small we
can still say that the result is good if fm remains constant for di�erent values of m, since the loss of
e�ciency is due to the limited parallelism of the program. On the other side, smooth increments of
fm are a warning that the granularity of the parallel tasks is too �ne. A third scenario is possible in
which a signi�cant reduction in fm occurs as m enlarges, indicating something akin to superlinear
speedup. If this occurs, then fm would take a negative value.

3 Inadequate Utilization of Parallel Metrics

The objective of a parallel metaheuristic is to �nd a good solution in a short time. Therefore, the
choice of performance measures for these algorithms necessarily involves both solution quality and
computational e�ort. In this section, we discuss some scenarios, where these metrics are incorrectly
used, and we propose a solution to these situations.
Computational e�ort evaluation: Many researchers prefer the number of evaluations as a way
to measure the computational e�ort since it eliminates the e�ects of particular implementations,



12 E. Alba, G. Luque

software, and hardware, thus making comparisons independent from such details. But this measure
can be misleading in several cases in the �eld of parallel methods. Whenever the standard deviation
of the average �tness computation is high, for example, if some evaluations take longer than others
(parallel genetic programming [6]) or if the evaluation time is not constant, then the number of
evaluations does not re�ect the algorithm's speed correctly. Also, the traditional goal of parallelism
is not only the reduction of the number of evaluations but the reduction of time. Therefore, a
researcher must often use the two metrics to measure this e�ort.
Comparing means/medians: In practice, a simple comparison between two averages or medi-
ans (of time, of solutions quality, . . . ) might not give the same result as a comparison between
two statistical distributions. In general, it is necessary to o�er additional statistical values such
as the variance, and to perform a global statistical analysis to ensure that the conclusions are
meaningful and not just random noise. The main steps are the following: �rst, a normality test
(e.g., Kolmogorov-Smirnov) should be performed in order to check whether the variables follow
a normal distribution or not. If so, an Student t-test (two set of data) or ANOVA test (two or
more set of data) should be done, otherwise we should perform a non parametric test such as
Kruskal-Wallis. Therefore, the calculation of speedup is only adequate when the execution times
of the algorithms are statistically di�erent. This two-step procedure also allows to control the I
type error (the probability of incorrectly rejecting the null hypothesis when it is true), since the
two phases are independent (they test for di�erent null hypotheses).
Comparing algorithms with di�erent accuracy: Although this scenario can be interesting in
some speci�c applications, the calculation of the speedup or a related metric is not correct because
it is against the aim of the speedup to compare algorithms not yielding results of equal accuracy,
since the two algorithms are actually solving two di�erent problems (i.e., it is nonsense, e.g., to
compare a sequential metaheuristic solving TSP of 100 cities against its parallel version solving a
TSP of 50 cities). Solving two di�erent problems is what we have in speedup if the �nal accuracy
is di�erent in sequential and parallel.
Comparing parallel versions vs. canonical serial one: Several works compare the canonical
sequential version of an algorithm (e.g., a GA) against a parallel version (e.g., a distributed [2]).
But these algorithms have a di�erent behavior and therefore, we are comparing clearly di�erent
methods (as meaningless as comparing times of a sequential SA versus a parallel GA).
Using a prede�ned e�ort: Imposing a prede�ned time/e�ort and then comparing the solution
quality of the algorithms is an interesting and correct metric in general; what it is incorrect is to
use it to measure speedup or e�ciency (although works making this can be found in literature).
On the contrary, these metrics can be used when we compare the average time to a given solution,
de�ned over those runs that end in a solution (with a prede�ned quality maybe di�erent from
the optimal one). Sometimes, the average evaluations/time to termination is used instead of the
average evaluations/time to a solution of a given accuracy. This practice has clear disadvantages,
i.e., for runs �nding solutions of di�erent accuracy, using the total execution e�ort to compare
algorithms becomes hard to interpret from the point of view of parallelism.

4 Illustrating the In�uence of Measures

In this section we perform several experimental tests to show the importance of the reported
performances in the conclusions. We use two parallel methods to solve the well-known MAXSAT
problem [1]. This problem consists in �nding an assignment to a set of boolean variables such that
all the clauses of a given formula are satis�ed. In the experiments we use several instances generated
by De Jong [7]. These instances are composed of 100 variables and 430 clauses (f(opt) = 430, where
f is the number of satis�ed clauses).

The algorithms used are a parallel distributed genetic algorithm and a parallel simulated an-
nealing. Genetic algorithms (GA) [8] iteratively enhance a population of tentative solutions through
a natural evolution process. In the experiments, we use a parallel distributed GA (dGA)[9]. In this
parallel model, the population is structured into smaller subpopulations relatively isolated from the



Evaluation of parallel metaheuristics 13

others that occasionally exchange solutions. A simulated annealing (SA) [10] is a stochastic tech-
nique that can be seen as a hill-climber with an internal mechanism to escape from local optima.
In our parallel SA (pSA) there exists multiple asynchronous component SAs. Each component SA
periodically exchanges the best solution found (cooperation phase) with its neighbor SA.

4.1 Experiment Results

In our tests, we focus on the quality of found solutions and the execution time of a dGA and a pSA
to solve one MAXSAT instance [7]. The values shown in tables are the number of executions that
found the optimal value (% hit), the average �tness (avg), the number of evaluations (# evals),
and the running time (time). To assess the statistical signi�cance of the results we performed 100
independent runs and we have computed statistical analyses so that we could be able to distinguish
meaningful di�erences in the average values.
Panmictic vs. orthodox speedup: In our �rst experiment (Table 2), we show an example on
speedup. We show the results for a sequential SA against a parallel SA with di�erent number of pro-
cessors. We focus on two de�nitions of speedup: orthodox (orthodox) and panmictic (panmixia),
which were explained in Section 2.1. First, we can observe that we obtain a very good speedup
(even superlinear for two and four processors) using the panmictic de�nition of speedup. But this
comparison is not fair, since we are comparing two clearly di�erent methods. In fact, the mean
solution quality and the number of points of the search space explored by the canonical sequential
SA and the parallel ones are statistically di�erent (all the p−values smaller than 0.05). Hence,
we compare the same algorithm (orthodox speedup) both in sequential and in parallel (pSAn on
1 versus n processors). The orthodox values are slightly worse than those on the panmictic ones
but fair and realistic. The trends in both cases are similar (in some other algorithms the trends
could even be contradictory); the speedup is quite good but it is always sublinear and it slightly
moves away from the linear speedup as the number of CPUs increases which is a con�rmation of
what happens in parallel programming usually. From this experiment, it is clear that panmictic
de�nition of speedup is not adequate since it compares two di�erent methods, and in the following
examples, we will only focus on the orthodox speedup.

Table 2. Panmixia vs. orthodox speedup.

Alg. % hit avg # evals time
sm

panmixia orthodox

Seq. 66% 425.76 894313 18.26 - -
pSA2 88% 427.98 649251 8.89 2.06 1.89
pSA4 85% 427.82 648914 4.52 4.03 3.78
pSA8 87% 428.06 651725 2.55 7.16 6.94

Prede�ned e�ort: In our second example (Table 3), the termination condition is based on a
prede�ned e�ort (200,000 evaluations) and not in �nding a given solution in parallel and sequential.
In this example, algorithms (pSA and dGA) did not �nd any optimal solution in any execution.
Then we cannot use the percentage of hits to compare them: we must stick to another metric
to compare the quality of solutions. We could use the best solution found, but that single value
does not represent the actual behavior of the algorithms. In this case the best measure to compare
the quality of results is the mean �tness, but in these experiments the di�erences in this value
are negligible. Therefore, we can not state the superiority of any of them. The calculation of the
speedup is not always a good idea due to two main issues. Firstly, accuracy of the solutions found
is di�erent; and secondly, we have set a prede�ned number of evaluation, and therefore, we have
also �xed the execution time (time = c · teval · eval). In fact, we can calculate these constants
and, for example, the algorithm dGA8 executed on 1 processor has c1 = 3.4 · 10−5 and the same
method executed on a parallel platform with 8 machines has c8 = 4.3·10−6. Using this information,
we can choose the con�gurations of the methods to obtain any speedup that we happen to like,



14 E. Alba, G. Luque

thus biasing the result. In addition, we can obtain a theoretical linear speedup (sm = 8) if we
compare a dGA8 (8 processors) with 200,000 evaluations and a dGA8 (1 processor) with 202,350
evaluations. This prediction is quite accurate since these con�gurations has a experimental speedup
equal to 7.993.

Table 3. Prede�ned e�ort.
Alg. % hit avg # evals time sm

pSA8
proc = 1 0% 424.13 200000 6.89 -
proc = 8 0% 424.09 200000 0.87 7.92

dGA8
proc = 1 0% 424.82 200000 9.79 -
proc = 8 0% 424.86 200000 1.24 7.90

Other parallel metrics: We conclude this section showing (in Table 4) the results when the
stopping condition is to �nd the global optimum (or when the global population has converged).
In this experiment, we have also included in our analysis the e�ciency (em column) and the serial
fraction (fm column) using the times of the runs �nding a solution. First, we notice that the parallel
versions improve the solutions found by the serial one and located them in a smaller number of
evaluations. Once we have analyzed the numerical performance, we can focus on execution times
and parallel metrics. We observed that the parallel methods obtain quite good speedups with a
moderate loss of e�ciency when the number of processor is increased. Here, the serial fraction
metric plays an important role since the variation in this measure is negligible, indicating that this
loss of e�ciency is mainly due to the limited parallelism (intrinsic sequential part) of the program
and not a result of a (own) poor implementation.

Table 4. Other parallel metrics.
Alg. % hit avg # evals time sm em fm

Seq. 73% 427.23 429723 11.48 - - -
dGA2 90% 428.10 397756 5.87 1.93 0.96 0.036
dGA4 94% 428.54 401505 3.18 3.65 0.91 0.032
dGA8 94% 428.31 380192 1.89 6.43 0.80 0.035

5 Conclusions

This paper considered the issue of reporting experimental research with parallel metaheuristics.
Since this is a di�cult task, the main issues of an experimental design are highlighted.

As it could be expected, we have focused on parallel performance metrics that allow to compare
parallel approaches against other techniques in the literature. We have given some ideas to guide
researchers in their work.

Finally, we have performed several experimental tests to illustrate the in�uence and utilization
of the many metrics described in the work. We have analyzed di�erent scenarios and we have
observed that the importance of a fair metric is a key factor to ensure the correctness of the
conclusions.

Acknowledgments

The authors acknowledge partial funding by Spanish Ministry of Education and European FEDER
under contract TIN2005-08818-C04-01 (the OPLINK project, http://oplink.lcc.uma.es).

References

1. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman, San Francisco (1979)



Evaluation of parallel metaheuristics 15

2. Alba, E., ed.: Parallel Metaheuristics: A New Class of Algorithms. Wiley (2005)
3. Alba, E.: Parallel evolutionary algorithms can achieve super-linear performace. Information Processing

Letters 82 (2002) 7�13
4. Barr, R., Hickman, B.: Reporting Computational Experiments with Parallel Algorithms: Issues, Mea-

sures, and Experts' Opinions. ORSA Journal on Computing 5(1) (1993) 2�18
5. Karp, A., Flatt, H.: Measuring parallel processor performance. Communications of the ACM 33(5)

(1990) 539�543
6. Koza, J.R.: Genetic Programming. The MIT Press, Cambridge (1992)
7. Jong, K.A.D., Potter, M.A., Spears, W.M.: Using problem generators to explore the e�ects of epistasis.

In: 7th ICGA, Kaufman (1997) 338�345
8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley

(1989)
9. Tanese, R.: Distributed genetic algorithms. In Scha�er, J.D., ed.: Proceedings of the Third ICGA,

Morgan Kaufmann (1989) 434�439
10. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by Simulated Annealing. Science 220(4598)

(1983) 671�680


