Experimental Analysis of
Algorithms: What to Measure

Catherine C. McGeoch
Ambherst College



Theory vs Practice

Predict puck velocities
using the new composite
sticks.







Experiments on Algorithms

Good news

Bad news

Easy to probe.

Nearly total experimental control.
Simple mechanisms.

Model validation not a problem.
Fast experiments (often).

Tons of data points (often).

Unusual questions = few techniques.

Unusually precise questions = need
advanced techniques.

Unusual data = parametric methods are
weak.

Large and infinite sample spaces =
sampling difficulties.

Generalization/abstraction from the
computational artifact = extrapolation.

NP-hard problems = problematic.




Standard statistical techniques

1. Comparison (estimation
and hypothesis testing):

same/different, CoSst
bigger/smaller. [ [
[]
2. Interpolation (linear and B O
nonlinear regression -- O
fitting models to data. - n -
3. Extrapolation (??) --

building models of data,
explaining phenomena. parameter



Standard statistical techniques

1. Comparison (estimation
and hypothesis testing):
same/different,
bigger/smaller.

2. Interpolation (linear and
nonlinear regression --
fitting models to data.

3. Extrapolation (*) --
building models of data,
explaining phenomena.

Ccost

- O
O
; _ S
- O
[ ]
numerical

parameter




Standard statistical techniques
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Some Nonstandard Techniques

Graphical analysis (GA) -- big data sets,
unusual questions, interpolation,
extrapolation.

. Exploratory data analysis (EDA) -- model
building, unusual data sets.

Variance reduction techniques -- simple
mechanisms, complete control.

. Biased estimators -- NP-Hard problems,
large sample spaces.



Case Study: First Fit Bin Packing

[

Consider weights in order of arrival; pack each into the
first (leftmost) bin that can contain it.

Applications:
CD file
storage; stock
cutting; iPod
file storage;
generalizations
to 2D, 3D...

Bin packing is
NP-Hard.

How well does
the FF heuristic
perform?



Experimental Study of First Fit
Bin Packing

Input categories:

-- unil: nreals drawn uniformly from (0, 1]
-- uni8: nreals drawn uniformly from (0, .8]
-- file: nfile sizes (scaled to 0..1).

-- dict: n dictionary word sizes (in 0..1).

Run First Fit on these inputs, analyze results....



What to Measure?

What performance indicator to use for assessing
heuristic solution quality?

The obvious choice:
Number of Bins

Other performance indicators suggested by data
analysis:
- Graphical analysis (GA)
- Exploratory data analysis (EDA)
- Variance reduction techniques (VRT)
- Biased estimators




First Fit

input type n Bins
unil 30,000 15,270
unil 60,000 30,446
unil 120,000 60,809
uni8 30,000 12,217
uni8 60,000 24,385
uni8 120,000 48,965
file 30,000 9
file 60,000 13
file 124,016 27
dicto 60,687 23,727
dicto 61,406 22,448
dicto 81,520 28,767

Tabular data:
Good for

comparisons.

Which is
better? How
much better?

When is it
better?



Graphical Analysis

Identify trends .

7

Find common scales
Discover anomalies (

Build models/explanations
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GA: Look for trends.
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GA (Weight Sum vs Bins): Find a common scale
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unifarm 1

Conjectured
input
properties
affecting FF
packing
quality:
symmetry,
discreteness,
skew.
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GA (distribution of weights in input): look for
explanations



Graphical Analysis: some results...

File data: FF packings are optimal! Due to extreme skew
in the weight distribution (few big weights, many tiny
weights).

Dicto data: Sorting the weights (FFD) makes the packing
worse! Due to discrete weights in bad combinations. (Bad
FFD packings can be predicted to within 100 bins. )

Uniform data: Smaller weight distributions (0 .8) give
worse packings (compared to optimal) than larger weight
distributions (0, 1). Probably due to asymmetry.

(more)...



Top line =

1-u
FF n=10k distribution of es in bins

Bottom line

packings.

=.55-u/2 o )
Conjecture: < N L P
The ' I T A
distribution of o] R ' '
“empty space ﬁa | R : i
per bin” has 3 . S . :
holes when u © e :i;
<=.85. These N P ; AR . !
holes cause ST Plii !
s T
f? 0.8 Uig

0.5 0.6 0

u

GA (details): u vs distribution of es in bins




Graphical
Analysis: What to Measure

Input:
Number of weights

Sum of weights Tre“ds
Number of weights > 0.5
Weight distribution

Output:
Number of bins
Empty space = Bins - Weight Sum
Gaps = Empty space per bin
Distribution of gaps
Animations of packings




Exploratory Data Analysis

Smooth and the rough: look at general trends, and (equally important)
deviation from trends.

Categories of data: tune analysis for type of data -- counts and
amounts, proportions, counted fractions, percentages ...

Data transformation: adjust data properties using logarithms, powers,
square roots, ratios ...

No a priori hypotheses,
no models, no estimators.
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EDA: The smooth ...

50000

60000

Number of
bins is nearly
equal to
weight sum.



1.08
-

1.06

Bins/Weight Sum

1.04

/

E—*\T

1.02

1

0 10000 20000 30000 40000 50000
Weight Sum
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Focus on Uniform Weight Lists

Given n weights drawn uniformly from
(0, uj, forO<u<=1.

Consider FF packing quality as f(u), for
fixed n.



Bins Used
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EDA (the smooth): u vs Bins, at n=100,000
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EDA (the Rough): u vs Bins/Weight Sum (~ nu/2).



EDA: Categories of Data

Bin efficiency = Bins/Weight Sum a ratio

Always > 1, mean 1s in
[1.0,1.7], variance large but
decreasing in n. Does it converge
to 1 (optimal) or to 1+c?

Empty space = Bins - Weight Sum

a difference

Always >= 0, mean is linear or
sublinear 1n nu, variance constant
in n.) Is it linear or sublinear in n?

Convergence in n is
easier to see
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EDA (data transformation): Linear growth
on a log-log scale.



EDA: Some Results

Number of Bins is near
Weight Sum ~ nu/2, with
largest deviations near u =

8.

Empty space (a difference)
has clearer convergence
properties than Bin
Efficiency (a ratio).

Empty space appears to be
asymptotically linear in n -
- non-optimal -- for all u
except 1.

cqrooth & roudt

ot Categore
Transmrmalion



Variance Reduction Techniques

X X

Is y asymptotically positive or negative?



VRT: Control Variates

Subtract a source of noise if its expectation is known and it is
positively correlated with outcome.

Expected number of bins: f3
Bins = Weight Sum + Empty Space
E[WS -nu/2] =0
E[B-(WS-nu/2) ] =p
Var[B - (WS - nu/2)] = Var[B] + Var[(WS-nu/2)] -
2Cov[B, (WS-nu/2)].
B - WS + nu/2 = ES + nu/2.
Weight Sum is a Control Variate for Bins.
ES + nu/2 is a better estimator of .
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More Variance Reduction
Techniques

Common Random Variates: Compare heuristics
on identical inputs when performance is
correlated.

Antithetic Variates: Exploit negative correlation
in inputs.

Stratification: Adjust variations in output
according to known variations in input.

Conditional Monte Carlo: More data per
experiment, using efficient tests.



Biased Estimators
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Biased Estimators
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Bad estimator of mean(y) vs cheap estimator of z=Ib(y).



Biased Estimators of Optimal
Packing Quality

Bounds on optimal number of bins:
U: FF number of bins used (or any heuristic)
L: Weight sum
L: Number items >= 0.5
L: FF/2
L:(FF -2)10/17
L: (FFD -4)9/11



Summary: What to Measure

First Fit Packings:
GA: trends

GA: scale
GA: details
EDA: smooth and rough

number of bins
number of weights
sum of weights

distribution of weights

EDA: data categories .
number of weights > .5

EDA: data transformation . o
packing efficiency
VRT: alternatives with same

mean, lower variance empty space

BE: lower/upper bounds on empty space per bin

the interesting quantity bounds on bin counts



Another Example Problem

TSP: Given graph G
with n vertices and m
weighted edges, find the
least-cost tour through
all vertices.

Applications: well known.



TSP: What to Measure

VRT’s and BE’s:

Mean edge weight is a control variate for Tour Length.

Beginning Tour is a control variate for Final Tour, in
iterative algorithms with random starts.

JIMST + Matching) is a biased estimator of Tour Length
(lower bound).

Held-Karp Lower Bound is biased estimator of Tour
Length.

Can you think of others?



TSP: Graphical Analysis

Trends

Vertices n and Edges m
... can you think of others? I
1ails

Output:
Tour Length
... can you think of others?




TSP: Exploratory Data Analysis

cqpoothaRougl
Lategories

Tapsiomalio

Any ideas?
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Upcoming Events in é\‘x\\‘
Experimental Z/\\
)

Algorithmics %

January 2007: ALENEX (Workshop on Algorithm Engineering
and Experimentation), New Orleans.

Spring 2007: DIMACS/NISS joint workshop on experimental
analysis of algorithms, North Carolina. (Center for Discrete
Mathematics and Theoretical Computer Science, and National
Institute for Statistical Sciences. )

June 2007: WEA (Workshop on Experimental Algorithmics),
Rome.

(Ongoing): DIMACS Challenge on Shortest Paths Algorithms.



