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Exercise 1 Bayesian prediction.

(a) Let θ ∼ Dir(α). Consider multinomial random variables (X1, X2, . . . , XN), where Xn ∼
Mult(θ) for each n, and where the Xn are assumed conditionally independent given
θ. Now consider a random variable Xnew ∼ Mult(θ) that is assumed conditionally
independent of (X1, X2, . . . , XN) given θ. Compute the predictive distribution:

p(xnew|x1, x2, . . . , xN , α)

by integrating over θ.

Solution: The exercise refers to the theory developed in sec. 2.1 and 2.2 of [B1].

With multinomial distributions we consider the representation in which Xj is a random

vector consisting of all 0’s and a single 1. For example, ~x = (0, 0, 1, 0, 0, 0)T. If we
denote p(xk = 1) = θk then Xj ∼ Mult(θ) corresponds to saying:

p(~x|~θ) =
K

∏
k=1

θxk
k (1)

and ~θ = (θ1, . . . , θK)T. This distribution is also known as generalized Bernoulli distri-
bution.

Consequently, the likelihood for the training set (X1, X2, . . . , XN) of independent ob-
servations is:

p(~x1, . . . ,~xN |~θ) =
m

∏
j=1

K

∏
k=1

θ
xjk
k =

K

∏
k=1

θ
∑m

j=1 xjk

k =
K

∏
k=1

θlk
k

where we let lk be the total number of xj that belong to class k. The prior distribtuion
of Θ is

Dir(~θ|~α) =
Γ(α0)

Γ(α1) · · · Γ(αK)

K

∏
k=1

θαk−1
k

with 0 ≤ θk ≤ 1, ∑k θk = 1, ~α = (α1, . . . , αK)T and α0 = ∑k αk. The Dirichlet
distribution is constructed with the aim of satisfying the conjugacy property. The
fraction in front of the product is the normalizing coefficient derived from:

1
g(~α)

∫ K

∏
k=1

θαk−1
k d~θ = 1 (2)

g(~α) =
Γ(α1) · · · Γ(αK)

Γ(α0)
(3)

The expected value for the kth component of the random variable ~Θ is

E[Θk] =
αk

α0
.
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From Bayes’ Theorem

p(~θ|~x1, . . . ,~xN) ∝ p(~x1, . . . ,~xN |~θ)p(~θ) ∝
K

∏
k=1

θαk+lk−1
k

The posterior takes again the form of a Dirichlet distribution (conjugacy property)
and comparing with the definition of the Dirichlet distribution above we can determine
the normalization coefficients as

p(~θ|~x1, . . . ,~xN) = Dir(~θ|~α +~l) =
Γ(α0 + m)

Γ(α1 + l1) · · · Γ(αK + lK)

K

∏
k=1

θαk+lk−1
k (4)

with ~l = (l1, . . . , lK)T.

To evaluate the predictive distribution of a new outcome we use the sum and product
rules of probability

p(~xnew|~x1, . . . ,~xN , α) =
∫ ~1

~0
p(~xnew|~θ,~α)p(~θ|~x1, . . . ,~xN ,~α)d~θ

From (1) and (4) we have

p(~xnew|~x1, . . . ,~xN , α) =
∫

p(~xnew|~θ,~α)p(~θ|~x1, . . . ,~xN ,~α)d~θ

=
∫ K

∏
k=1

θ
xnew,k
k

1

g(~α +~l)

K

∏
k=1

θαk+lk−1
k d~θ

=
1

g(~α +~l)

∫ K

∏
k=1

θ
αk+lk+xnew,k−1
k

=
g(~α +~xnew +~l)

g(~α +~l)

=
Γ(α0 + m + 1)Γ(α1 + l1) · · · Γ(αK + lK)

Γ(α1 + l1 + x1) · · · Γ(αK + lK + xk)Γ(α0 + m)

=
αk + lk

α0 + m

where k is chosen such that xnew,k = 1.

(b) Redo the problem in part (a), replacing the multinomial distribution with an arbitrary
exponential family distribution, and the Dirichlet distribution with the correspond-
ing exponential family conjugate distribution. You are to show that in general the
predictive probability p(xnew|x1, x2, . . . , xN) is a ratio of normalizers.

Solution: The exercise refers to the theory developed in sec. 2.4 and 2.4.2 of [B1].
Here we use a slightly different notation.

We first write out the likelihood for an arbitrary exponential family to find the form
of the conjugate prior.

p(x1, . . . , xN |η) =

(
∏

j
h(xj)

)
g(η)m exp

(
ηT ∑

j
u(xj)

)

=

(
∏

j
h(xj)

)
exp

(
ηT ∑

j
T(xj)−mA(η)

)
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where we rewrote the exponential distribution in slightly different terms than we saw
at lecture with exp{−mA(η)} = g(η)m and T = u.

The conjugate family of priors has the same “form” as the likelihood to ensure that
the posterior remains in the family of priors. Thus, for conjugate prior we use

p(η|τ, n0) =
1

Z(τ, n0)
exp

(
ηTτ − n0A(η)

)
where Z(τ, n0) is a normalizing function

Z(τ, η0)
def
=
∫

exp
(

ηTτ − η0A(η)
)

dη

Then,

p(x1, . . . , xm|τ, n0) =
∫

p(x1, . . . , xm|η)p(η|τ)dη

=
∫ ( m

∏
j=1

h(xj)

)
exp

(
ηT

(
τ +

m

∑
j=1

T(xj)

)
− (m + n0)A(η)

)
dη

=

(
m

∏
j=1

h(xj)

)
Z

(
τ +

m

∑
j=1

T(xj), m + n0

)

Similarly

p(xnew, x1, . . . , xm|τ, n0) =

(
h(xnew)

m

∏
j=1

h(xj)

)
Z

(
τ + T(xnew) +

m

∑
j=1

T(xj), m + n0 + 1

)

The predictive probability is then, from product rule,

p(xnew|x1, . . . , xm, τ) =
p(xnew, x1, . . . , xm|τ)

p(x1, . . . , xm|τ)

=

(
h(xnew) ∏m

j=1 h(xj)
)

Z
(

τ + T(xnew) + ∑m
j=1 T(xj), m + n0 + 1

)
(

∏m
j=1 h(xj)

)
Z
(

τ + ∑m
j=1 T(xj), m + n0

)
= h(xnew)

Z
(

τ + T(xnew) + ∑m
j=1 T(xj), m + n0 + 1

)
Z
(

τ + ∑m
j=1 T(xj), m + n0

)

Exercise 2 Classification. The course website contains a data set of (xn, yn ) pairs,
where the xn are 2-dimensional vectors and yn is a binary label.

(a) Plot the data, using 0’s and X’s for the two classes. The plots in the following parts
should be plotted on top of this plot.

Solution
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> D <- read.table("classification.dat")

> #plot(min(D$V1):max(D$V1),min(D$V1):max(D$V1),type="n")

> plot(range(D$V1),range(D$V2),type="n")

> text(D$V1,D$V2,D$V3)
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Alternatively, with the lattice package (always explore the possibilities of the new functions
you encounter via example).

> require(lattice)

> print(

xyplot(V1~V2,groups=V3,

data=D,pch=c(1,4))

)
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(b) Write a program to fit a logistic regression model using stochastic gradient ascent.
Plot the line where the logistic function is equal to 0.5. Compare this outcome with
the result attained using the glm function in R (check example in predict.glm).

Solution

The line that corresponds to p = 0.5:

Let’s investigate why we obtain two curves. Let’s try to plot the linear discriminant
in implicit form

Hence, in the previous plot the two lines where due to a discontinuity of the function
that was linked by a line (ie, from −∞ to ∞).
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> reslogit <- glm(V3 ~ V1*V2, data=D, family=binomial(link="logit"))

> summary(reslogit)

> # components of the resulting object reslogit:

> # reslogit$coefficients: estimated regression coefficients

> # reslogit$fitted.values: estimated success probabilities

> # reslogit$residuals: residuals

> # reslogit$linear.predictors: the linear predictor b0+b1*x1+b2*x2

> #

>

>

> # Let's plot at a fixed value 0.8 for V2

>

> x1 <- seq(-15,2,.2)

> x2 <- -0.8

> lp <- reslogit$coefficients[1]+reslogit$coefficients[2]*x1+reslogit$coefficients[3]*x2+reslogit$coefficients[3]*x2*x1

> pr <- exp(lp)/(1+exp(lp))

> plot(D$V1,D$V3,xlim=c(-15,2),ylim=c(0,1),xlab="V1",ylab="Response")

> lines(x1,pr,lty=1)

●

●●

●●

●

●

●

● ●

●● ● ●

●

●●

●● ● ●●

● ●●● ● ●

●

●

● ●

●●

●

●

● ●●

●

●● ●●●●●

●

●●

● ●●● ● ●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●●

●

●

●

●

●●

●●

● ●

●

●●

●● ●

●

●

● ●

●

● ●

●● ●

●

●

●●

●

● ●

●

●●●●

● ●

● ●

●

●●

●●●

●

●

●●●●

●

●

● ●●

●●

●●●

●●

●●●

●

●

●

●

●

●

●

● ●

−15 −10 −5 0

0.0

0.2

0.4

0.6

0.8

1.0

V1

R
es

po
ns

e

6



DM825 – Spring 2011 Assignment Sheet

> theta <- reslogit$coefficients

> plot(range(D$V1),range(D$V2),type="n")

> text(D$V1,D$V2,D$V3)

> matlines(x <- seq(-15,2,.2),(-theta[2]*x-theta[1])/(theta[3]+theta[4]*x),lwd=1)
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> x1 <- seq(-32,32,.2)

> x2 <- seq(-24,24,.2)

> f <- function(x,y) {

apply(as.matrix(cbind(x,y)),1,

function(l) theta%*%c(1,l[1],l[2],l[1]*l[2]))

}

> zs <- outer(x1,x2,FUN=f)

> contour(x1,x2,zs,levels=0)
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(c) Fit a linear regression to the problem, treating the class labels as real values 0 and 1.
(You can solve the linear regression in any way you like, including solving the normal
equations, using the LMS algorithm, or calling the built-in lm routine in R). Plot the
line where the linear regression function is equal to 0.5.

Solution

> reslm <- lm(V3 ~ V1*V2, data=D)

> summary(reslm)

> theta <- reslm$coefficients

> plot(range(D$V1),range(D$V2),type="n")

> text(D$V1,D$V2,D$V3)

> matlines(x <- seq(-15,2,.2),(0.5-theta[2]*x-theta[1])/(theta[3]+theta[4]),lwd=1)
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> x1 <- seq(-32,32,.2)

> x2 <- seq(-24,24,.2)

> f <- function(x,y) {

apply(as.matrix(cbind(x,y)),1,

function(l) theta%*%c(1,l[1],l[2],l[1]*l[2]))

}

> zs <- outer(x1,x2,FUN=f)

> contour(x1,x2,zs,levels=0.5)
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(d) The data set is a separate data set generated from the same source. Test your fits
from parts (b), (c), and (d) on these data and compare the results.
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