Lecture 11
 Probabilistic Graphical Models Inference

Marco Chiarandini
Deptartment of Mathematics \& Computer Science
University of Southern Denmark

Slides by Stuart Russell and Peter Norvig

Outline

1. Inference in $B N$

2. Inference by Randomized Algorithms

Inference tasks

- Simple queries: compute posterior marginal $\mathrm{P}\left(X_{i} \mid \mathbf{E}=\mathbf{e}\right)$ e.g., $P($ NoGas \mid Gauge $=$ empty, Lights $=o n$, Starts $=$ false $)$
- Conjunctive queries: $\mathbf{P}\left(X_{i}, X_{j} \mid \mathbf{E}=\mathbf{e}\right)=\mathbf{P}\left(X_{i} \mid \mathbf{E}=\mathbf{e}\right) \mathbf{P}\left(X_{j} \mid X_{i}, \mathbf{E}=\mathbf{e}\right)$
- Explanation: why do I need a new starter motor?

Inference by enumeration

Sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:

$$
\begin{aligned}
\mathbf{P}(B \mid j, m) & =\mathbf{P}(B, j, m) / P(j, m) \\
& =\alpha \mathbf{P}(B, j, m) \\
& =\alpha \sum_{e} \sum_{a} \mathbf{P}(B, e, a, j, m)
\end{aligned}
$$

Rewrite full joint entries using product of CPT entries:

$$
\begin{aligned}
\mathbf{P}(B \mid j, m) & =\alpha \sum_{e} \sum_{a} \mathbf{P}(B) P(e) \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a) \\
& =\alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)
\end{aligned}
$$

Recursive depth-first enumeration: $O(n)$ space, $O\left(d^{n}\right)$ time

Enumeration algorithm

function Enumeration- $\operatorname{Ask}(X, \mathrm{e}, b n)$ returns a distribution over X inputs: X, the query variable e, observed values for variables E $b n$, a Bayesian network with variables $\{X\} \cup E \cup Y$
$\mathrm{Q}(X) \leftarrow$ a distribution over X, initially empty
for each value x_{i} of X do
extend e with value x_{i} for X
$\mathrm{Q}\left(x_{i}\right) \leftarrow$ Enumerate-All(Vars[bn], e)
return Normalize $(\mathrm{Q}(X))$
function Enumerate-All(vars, e) returns a real number
if Empty? (vars) then return 1.0
$Y \leftarrow$ First(vars)
if Y has value y in e
then return $P(y \mid \operatorname{parent}(Y)) \times$ Enumerate-All(Rest(vars), e) else return $\sum_{y} P(y \mid \operatorname{parent}(Y)) \times$ Enumerate-All(Rest(vars), $\left.\mathbf{e}_{y}\right)$ where \mathbf{e}_{y} is e extended with $Y=y$

Evaluation tree

Enumeration is inefficient: repeated computation e.g., computes $P(j \mid a) P(m \mid a)$ for each value of e

Complexity of exact inference

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- time and space cost (with variable elimination) are $O\left(d^{k} n\right)$
- hence time and space cost are linear in n and k bounded by a constant

Multiply connected networks:

- can reduce 3SAT to exact inference \Longrightarrow NP-hard
- equivalent to counting 3SAT models \Longrightarrow \#P-complete

1. $A \vee B \vee C$
2. $C \vee D v \neg A$
3. $B \vee C \vee \neg D$

Outline

1. Inference in BN

2. Inference by Randomized Algorithms

Inference by stochastic simulation

Basic idea:

- Draw N samples from a sampling distribution S
- Compute an approximate posterior probability \hat{P}
- Show this converges to the true probability

Outline:

- Sampling from an empty network
- Rejection sampling: reject samples disagreeing with evidence
- Likelihood weighting: use evidence to weight samples
- Markov chain Monte Carlo (MCMC): sample from a stochastic process
whose stationary distribution is the true posterior

Sampling from an empty network

```
function Prior-Sample(bn) returns an event sampled from bn
    inputs: bn, a belief network specifying joint distribution
P}(\mp@subsup{X}{1}{},\ldots,\mp@subsup{X}{n}{}
    x}\leftarrow\mathrm{ an event with n elements
    for }i=1\mathrm{ to }n\mathrm{ do
        x}\leftarrow\leftarrow\mathrm{ a random sample from }\textrm{P}(\mp@subsup{X}{i}{}|\mathrm{ parents ( }\mp@subsup{X}{i}{})
        given the values of Parents}(\mp@subsup{X}{i}{})\mathrm{ in }\mathbf{x
return x
```


Example

Sampling from an empty network contd ifecerce ib Enentom alse

Probability that PriorSample generates a particular event

$$
S_{P S}\left(x_{1} \ldots x_{n}\right)=P\left(x_{1} \ldots x_{n}\right)
$$

i.e., the true prior probability
E.g., $S_{P S}(t, f, t, t)=0.5 \times 0.9 \times 0.8 \times 0.9=0.324=P(t, f, t, t)$

Proof: Let $N_{P S}\left(x_{1} \ldots x_{n}\right)$ be the number of samples generated for event x_{1}, \ldots, x_{n}. Then we have

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \hat{P}\left(x_{1}, \ldots, x_{n}\right) & =\lim _{N \rightarrow \infty} N_{P S}\left(x_{1}, \ldots, x_{n}\right) / N \\
& =S_{P S}\left(x_{1}, \ldots, x_{n}\right) \\
& =\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)=P\left(x_{1} \ldots x_{n}\right)
\end{aligned}
$$

\rightsquigarrow That is, estimates derived from PriorSample are consistent Shorthand: $\hat{P}\left(x_{1}, \ldots, x_{n}\right) \approx P\left(x_{1} \ldots x_{n}\right)$

Rejection sampling

$\hat{\mathbf{P}}(X \mid \mathrm{e})$ estimated from samples agreeing with e
function Rejection-Sampling $(X, \mathbf{e}, b n, N)$ returns an estimate of $P(X \mid \mathbf{e})$
local variables: N , a vector of counts over X, initially zero

$$
\text { for } j=1 \text { to } N \text { do }
$$

$\mathrm{x} \leftarrow$ Prior-Sample(bn)
if x is consistent with e then
$\mathbf{N}[x] \leftarrow \mathbf{N}[x]+1$ where x is the value of X in x
return Normalize $(\mathrm{N}[X])$
E.g., estimate $\mathbf{P}($ Rain \mid Sprinkler $=$ true $)$ using 100 samples

27 samples have Sprinkler $=$ true Of these, 8 have Rain $=$ true and 19 have Rain $=$ false.
$\hat{\mathbf{P}}($ Rain \mid Sprinkler $=$ true $)=$ Normalize $(\langle 8,19\rangle)=\langle 0.296,0.704\rangle$
Similar to a basic real-world empirical estimation procedure

Analysis of rejection sampling

Rejection sampling returns consistent posterior estimates

```
Proof:
\mathbf{P}}(X|\mathbf{e})=\alpha\mp@subsup{\mathbf{N}}{PS}{}(X,\mathbf{e})\quad\mathrm{ (algorithm defn.)
    = N NPS}(X,\mathbf{e})/\mp@subsup{N}{PS}{}(\mathbf{e})\quad(\mathrm{ normalized by N NPS}(\mathbf{e})
    \approxP(X,\mathbf{e})/P(\mathbf{e})\quad\mathrm{ (property of PriorSample)}
    =P(X|e) (defn. of conditional probability)
```

Problem: hopelessly expensive if $P(\mathbf{e})$ is small $P($ e $)$ drops off exponentially with number of evidence variables!

Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence
function Likelihood-Weighting $(X, \mathbf{e}, b n, N)$ returns an estimate of $P(X \mid \mathbf{e})$ local variables: W , a vector of weighted counts over X, initially zero

$$
\begin{aligned}
& \text { for } j=1 \text { to } N \text { do } \\
& \quad \mathbf{x}, w \leftarrow \text { Weighted-Sample }(b n) \\
& \mathbf{W}[x] \leftarrow \mathbf{W}[x]+W \text { where } x \text { is the value of } X \text { in } \mathrm{x} \\
& \text { return Normalize }(\mathrm{W}[X])
\end{aligned}
$$

function Weighted-Sample(bn, e) returns an event and a weight
$\mathbf{x} \leftarrow$ an event with n elements; $w \leftarrow 1$
for $i=1$ to n do
if X_{i} has a value x_{i} in e then $w \leftarrow w \times P\left(X_{i}=x_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$ else $x_{i} \leftarrow$ a random sample from $\mathrm{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
return x, w

Likelihood weighting example

Likelihood weighting analysis

Likelihood weighting returns consistent estimates
Sampling probability for WeightedSample is

$$
S_{W S}(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{\prime} P\left(z_{i} \mid \operatorname{parents}\left(Z_{i}\right)\right)
$$

(pays attention to evidence in ancestors only) \rightsquigarrow somewhere "in between" prior and posterior distribution

Weight for a given sample \mathbf{z}, e is

$$
w(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{m} P\left(e_{i} \mid \operatorname{parents}\left(E_{i}\right)\right)
$$

but performance still degrades with many evidence variables because a few samples have nearly all the total weight
Weighted sampling probability is

$$
S_{W S}(\mathbf{z}, \mathbf{e}) w(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{\prime} P\left(z_{i} \mid \text { parents }\left(Z_{i}\right)\right) \prod_{i=1}^{m} P\left(e_{i} \mid \operatorname{parents}\left(E_{i}\right)\right)=P(\mathbf{z}, \mathbf{e})
$$

Summary

Approximate inference by LW:

- LW does poorly when there is lots of (late-in-the-order) evidence
- LW generally insensitive to topology
- Convergence can be very slow with probabilities close to 1 or 0
- Can handle arbitrary combinations of discrete and continuous variables

Approximate inference using MCMC

"State" of network = current assignment to all variables.
Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

```
function MCMC-Ask \((X, \mathbf{e}, b n, N)\) returns an estimate of \(P(X \mid \mathbf{e})\)
    local variables: \(\mathrm{N}[X]\), a vector of counts over \(X\), initially zero
    \(Z\), nonevidence variables in \(b n\), hidden + query
    x , current state of the network, initially copied from e
    initialize x with random values for the variables in \(\mathbf{Z}\)
    for \(j=1\) to \(N\) do
        \(\mathbf{N}[x] \leftarrow \mathbf{N}[x]+1\) where \(x\) is the value of \(X\) in x
        for each \(Z_{i}\) in \(Z\) do
            sample the value of \(Z_{i}\) in \(\times\) from \(\mathrm{P}\left(Z_{i} \mid m b\left(Z_{i}\right)\right)\)
            given the values of \(\operatorname{MB}\left(Z_{i}\right)\) in \(x\)
    return Normalize( \(\mathrm{N}[X]\) )
```

Can also choose a variable to sample at random each time

The Markov chain

With Sprinkler $=$ true, W etGrass $=$ true, there are four states:

Wander about for a while, average what you see
Probabilistic finite state machine

MCMC example contd.

Estimate $\mathbf{P}($ Rain \mid Sprinkler $=$ true,W etGrass $=$ true $)$
Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.
E.g., visit 100 states

31 have Rain $=$ true, 69 have Rain $=$ false
$\hat{\mathbf{P}}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)=$ Normalize $(\langle 31,69\rangle)=\langle 0.31,0.69\rangle$

Theorem
The Markov Chain approaches a stationary distribution: long-run fraction of time spent in each state is exactly proportional to its posterior probability

Markov blanket sampling

Markov blanket of Cloudy is
Sprinkler and Rain
Markov blanket of Rain is
Cloudy, Sprinkler, and WetGrass

Main computational problems:

1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large: $P\left(X_{i} \mid m b\left(X_{i}\right)\right)$ won't change much (law of large numbers)

Local semantics and Markov Blanket

Local semantics: each node is conditionally independent of its nondescendants given its parents

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents

MCMC analysis: Outline

- Transition probability $q\left(x \rightarrow x^{\prime}\right)$
- Occupancy probability $\pi_{t}(\mathbf{x})$ at time t
- Equilibrium condition on π_{t} defines stationary distribution $\pi(\mathbf{x})$

Note: stationary distribution depends on choice of $q\left(x \rightarrow x^{\prime}\right)$

- Pairwise detailed balance on states guarantees equilibrium
- Gibbs sampling transition probability:
sample each variable given current values of all others
\Longrightarrow detailed balance with the true posterior
- For Bayesian networks, Gibbs sampling reduces to sampling conditioned on each variable's Markov blanket

Stationary distribution

- $\pi_{t}(\mathbf{x})=$ probability in state x at time t
$\pi_{t+1}\left(\mathbf{x}^{\prime}\right)=$ probability in state \mathbf{x}^{\prime} at time $t+1$
- π_{t+1} in terms of π_{t} and $q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)$

$$
\pi_{t+1}\left(\mathbf{x}^{\prime}\right)=\sum_{\mathbf{x}} \pi_{t}(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)
$$

- Stationary distribution: $\pi_{t}=\pi_{t+1}=\pi$

$$
\pi\left(\mathbf{x}^{\prime}\right)=\sum \mathbf{x} \pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right) \quad \text { for all } \mathbf{x}^{\prime}
$$

- If π exists, it is unique (specific to $q\left(x \rightarrow x^{\prime}\right)$)
- In equilibrium, expected "outflow" = expected "inflow"

Detailed balance

- "Outflow" = "inflow" for each pair of states:

$$
\pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)=\pi\left(\mathbf{x}^{\prime}\right) q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \quad \text { for all } \mathbf{x}, \mathbf{x}^{\prime}
$$

- Detailed balance \Longrightarrow stationarity:

$$
\begin{aligned}
\sum \mathbf{x} \pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right) & =\sum \mathbf{x} \pi\left(\mathbf{x}^{\prime}\right) q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \\
& =\pi\left(\mathbf{x}^{\prime}\right) \sum \mathbf{x} q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \\
& =\pi\left(\mathbf{x}^{\prime}\right)
\end{aligned}
$$

- MCMC algorithms typically constructed by designing a transition probability q that is in detailed balance with desired π

Gibbs sampling

- Sample each variable in turn, given all other variables
- Sampling X_{i}, let \bar{X}_{i} be all other nonevidence variables
- Current values are x_{i} and $\overline{x_{i}} ; \mathbf{e}$ is fixed
- Transition probability is given by

$$
q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)=q\left(x_{i}, \overline{\mathbf{x}_{i}} \rightarrow x_{i}^{\prime}, \overline{\mathbf{x}_{i}}\right)=P\left(x_{i}^{\prime} \mid \overline{\mathbf{x}_{i}}, \mathbf{e}\right)
$$

- This gives detailed balance with true posterior $P(\mathbf{x} \mid \mathbf{e})$:

$$
\begin{aligned}
\pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right) & =P(\mathbf{x} \mid \mathbf{e}) P\left(x_{i}^{\prime} \mid \overline{\mathbf{x}_{i}}, \mathbf{e}\right)=P\left(x_{i}, \overline{\mathbf{x}_{i}} \mid \mathbf{e}\right) P\left(x_{i}^{\prime} \mid \overline{\mathbf{x}_{i}}, \mathbf{e}\right) \\
& =P\left(x_{i} \mid \overline{\mathbf{x}_{i}}, \mathbf{e}\right) P\left(\overline{\mathbf{x}_{i}} \mid \mathbf{e}\right) P\left(x_{i}^{\prime} \mid \overline{\mathbf{x}_{i}}, \mathbf{e}\right) \quad \text { (chain rule) } \\
& =P\left(x_{i} \mid \overline{\mathbf{x}_{i}}, \mathbf{e}\right) P\left(x_{i}^{\prime}, \overline{\mathbf{x}_{i}} \mid \mathbf{e}\right) \quad \text { (chain rule backwards) } \\
& =q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \pi\left(\mathbf{x}^{\prime}\right)=\pi\left(\mathbf{x}^{\prime}\right) q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right)
\end{aligned}
$$

Summary

Exact inference by variable elimination:

- polytime on polytrees, NP-hard on general graphs
- space $=$ time, very sensitive to topology

Approximate inference by LW, MCMC:

- PriorSampling and RejectionSampling unusable as evidence grow
- LW does poorly when there is lots of (late-in-the-order) evidence
- LW, MCMC generally insensitive to topology
- Convergence can be very slow with probabilities close to 1 or 0
- Can handle arbitrary combinations of discrete and continuous variables

