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Inference in BN
Inference by Random AlgsInference tasks

Simple queries: compute posterior marginal P(Xi |E = e)
e.g., P(NoGas|Gauge = empty , Lights = on,Starts = false)

Conjunctive queries: P(Xi ,Xj |E = e) = P(Xi |E = e)P(Xj |Xi ,E = e)

Explanation: why do I need a new starter motor?
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Inference in BN
Inference by Random AlgsInference by enumeration

Sum out variables from the joint without actually constructing its explicit
representation

Simple query on the burglary network:

P(B|j ,m) = P(B, j ,m)/P(j ,m)
= αP(B, j ,m)
= α

∑
e
∑

a P(B, e, a, j ,m)

B E

J

A

M
Rewrite full joint entries using product of CPT entries:

P(B|j ,m) = α
∑

e
∑

a P(B)P(e)P(a|B, e)P(j |a)P(m|a)
= αP(B)

∑
e P(e)

∑
a P(a|B, e)P(j |a)P(m|a)

Recursive depth-first enumeration: O(n) space, O(dn) time
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Inference in BN
Inference by Random AlgsEnumeration algorithm

function Enumeration-Ask(X, e,bn) returns a distribution over X
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network with variables {X} ∪ E ∪ Y

Q(X )← a distribution over X, initially empty
for each value xi of X do

extend e with value xi for X
Q(xi )←Enumerate-All(Vars[bn], e)

return Normalize(Q(X ))

function Enumerate-All(vars, e) returns a real number
if Empty?(vars) then return 1.0
Y←First(vars)
if Y has value y in e

then return P(y | parent(Y )) × Enumerate-All(Rest(vars), e)
else return

∑
y P(y | parent(Y )) × Enumerate-All(Rest(vars), ey )

where ey is e extended with Y = y
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Inference in BN
Inference by Random AlgsEvaluation tree
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Enumeration is inefficient: repeated computation
e.g., computes P(j |a)P(m|a) for each value of e
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Inference in BN
Inference by Random AlgsComplexity of exact inference

Singly connected networks (or polytrees):
– any two nodes are connected by at most one (undirected) path
– time and space cost (with variable elimination) are O(dkn)
– hence time and space cost are linear in n and k bounded by a constant

Multiply connected networks:
– can reduce 3SAT to exact inference =⇒ NP-hard
– equivalent to counting 3SAT models =⇒ #P-complete
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Inference in BN
Inference by Random AlgsOutline
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Inference in BN
Inference by Random AlgsInference by stochastic simulation

Basic idea:

Draw N samples from a sampling distribution S
Compute an approximate posterior probability P̂
Show this converges to the true probability P

Outline:
– Sampling from an empty network
– Rejection sampling: reject samples disagreeing with

evidence
– Likelihood weighting: use evidence to weight samples
– Markov chain Monte Carlo (MCMC): sample from a

stochastic process
whose stationary distribution is the true posterior

Coin

0.5
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Inference in BN
Inference by Random AlgsSampling from an empty network

function Prior-Sample(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution

P(X1, . . . ,Xn)

x← an event with n elements
for i = 1 to n do

xi← a random sample from P(Xi | parents(Xi ))
given the values of Parents(Xi ) in x

return x
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Inference in BN
Inference by Random AlgsExample
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Inference in BN
Inference by Random AlgsSampling from an empty network contd.

Probability that PriorSample generates a particular event

SPS(x1 . . . xn) = P(x1 . . . xn)

i.e., the true prior probability

E.g., SPS(t, f , t, t) = 0.5× 0.9× 0.8× 0.9 = 0.324 = P(t, f , t, t)

Proof: Let NPS(x1 . . . xn) be the number of samples generated for event
x1, . . . , xn. Then we have

lim
N→∞

P̂(x1, . . . , xn) = lim
N→∞

NPS(x1, . . . , xn)/N

= SPS(x1, . . . , xn)

=
n∏

i = 1

P(xi |parents(Xi )) = P(x1 . . . xn)

 That is, estimates derived from PriorSample are consistent
Shorthand: P̂(x1, . . . , xn) ≈ P(x1 . . . xn)
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Inference in BN
Inference by Random AlgsRejection sampling

P̂(X |e) estimated from samples agreeing with e

function Rejection-Sampling(X, e,bn,N) returns an estimate of P(X |e)
local variables: N, a vector of counts over X, initially zero

for j = 1 to N do
x←Prior-Sample(bn)
if x is consistent with e then

N[x]←N[x]+1 where x is the value of X in x
return Normalize(N[X])

E.g., estimate P(Rain|Sprinkler = true) using 100 samples
27 samples have Sprinkler = true

Of these, 8 have Rain = true and 19 have Rain = false.

P̂(Rain|Sprinkler = true) = Normalize(〈8, 19〉) = 〈0.296, 0.704〉
Similar to a basic real-world empirical estimation procedure
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Inference in BN
Inference by Random AlgsAnalysis of rejection sampling

Rejection sampling returns consistent posterior estimates

Proof:
P̂(X |e) = αNPS(X , e) (algorithm defn.)

= NPS(X , e)/NPS(e) (normalized by NPS(e))
≈ P(X , e)/P(e) (property of PriorSample)
= P(X |e) (defn. of conditional probability)

Problem: hopelessly expensive if P(e) is small
P(e) drops off exponentially with number of evidence variables!
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Inference in BN
Inference by Random AlgsLikelihood weighting

Idea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function Likelihood-Weighting(X, e,bn,N) returns an estimate of P(X |e)
local variables: W, a vector of weighted counts over X, initially zero

for j = 1 to N do
x,w←Weighted-Sample(bn)
W[x ]←W[x ] + w where x is the value of X in x

return Normalize(W[X ])

function Weighted-Sample(bn, e) returns an event and a weight

x← an event with n elements; w← 1
for i = 1 to n do

if Xi has a value xi in e
then w←w × P(Xi = xi | parents(Xi ))
else xi← a random sample from P(Xi | parents(Xi ))

return x, w
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Inference in BN
Inference by Random AlgsLikelihood weighting example

P(Rain|Sprinkler = true,WetGrass = true)
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w = 1.0 × 0.1 × 0.99 = 0.099
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Inference in BN
Inference by Random AlgsLikelihood weighting analysis

Likelihood weighting returns consistent estimates

Sampling probability for WeightedSample is

SWS(z, e) =
l∏

i = 1

P(zi |parents(Zi ))

(pays attention to evidence in ancestors only)
 somewhere “in between” prior and posterior
distribution

Weight for a given sample z, e is

w(z, e) =
m∏

i = 1

P(ei |parents(Ei ))

Cloudy

RainSprinkler

 Wet
Grass

but performance still degrades
with many evidence variables
because a few samples have
nearly all the total weight

Weighted sampling probability is

SWS(z, e)w(z, e) =
l∏

i = 1

P(zi |parents(Zi ))
m∏

i = 1

P(ei |parents(Ei )) = P(z, e)
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Inference in BN
Inference by Random AlgsSummary

Approximate inference by LW:
– LW does poorly when there is lots of (late-in-the-order) evidence
– LW generally insensitive to topology
– Convergence can be very slow with probabilities close to 1 or 0
– Can handle arbitrary combinations of discrete and continuous variables
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Inference in BN
Inference by Random AlgsApproximate inference using MCMC

“State” of network = current assignment to all variables.
Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-Ask(X, e,bn,N) returns an estimate of P(X |e)
local variables: N[X ], a vector of counts over X, initially zero

Z, nonevidence variables in bn, hidden + query
x, current state of the network, initially copied from e

initialize x with random values for the variables in Z
for j = 1 to N do

N[x ]←N[x ] + 1 where x is the value of X in x
for each Zi in Z do

sample the value of Zi in x from P(Zi |mb(Zi ))
given the values of MB(Zi ) in x

return Normalize(N[X ])

Can also choose a variable to sample at random each time
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Inference in BN
Inference by Random AlgsThe Markov chain

With Sprinkler = true,WetGrass = true, there are four states:

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Wander about for a while, average what you see

Probabilistic finite state machine
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Inference in BN
Inference by Random AlgsMCMC example contd.

Estimate P(Rain|Sprinkler = true,WetGrass = true)

Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.

E.g., visit 100 states
31 have Rain = true, 69 have Rain = false

P̂(Rain|Sprinkler = true,WetGrass = true) = Normalize(〈31, 69〉) = 〈0.31, 0.69〉

Theorem
The Markov Chain approaches a stationary distribution:

long-run fraction of time spent in each state is exactly
proportional to its posterior probability
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Inference in BN
Inference by Random AlgsMarkov blanket sampling

Markov blanket of Cloudy is
Sprinkler and Rain

Markov blanket of Rain is
Cloudy , Sprinkler , and WetGrass

Cloudy

RainSprinkler

 Wet
Grass

Probability given the Markov blanket is calculated as follows:

P(x ′
i |mb(Xi )) = P(x ′

i |parents(Xi ))
∏

Zj∈Children(Xi )

P(zj |parents(Zj))

Easily implemented in message-passing parallel systems

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:

P(Xi |mb(Xi )) won’t change much (law of large numbers)
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Inference in BN
Inference by Random AlgsLocal semantics and Markov Blanket

Local semantics: each node is
conditionally independent
of its nondescendants given its parents

Each node is conditionally
independent of all others given its
Markov blanket: parents + children +
children’s parents
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Inference in BN
Inference by Random AlgsMCMC analysis: Outline

Transition probability q(x→ x′)

Occupancy probability πt(x) at time t

Equilibrium condition on πt defines stationary distribution π(x)
Note: stationary distribution depends on choice of q(x→ x′)

Pairwise detailed balance on states guarantees equilibrium

Gibbs sampling transition probability:
sample each variable given current values of all others

=⇒ detailed balance with the true posterior

For Bayesian networks, Gibbs sampling reduces to
sampling conditioned on each variable’s Markov blanket
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Inference in BN
Inference by Random AlgsStationary distribution

πt(x) = probability in state x at time t
πt+1(x′) = probability in state x′ at time t + 1

πt+1 in terms of πt and q(x→ x′)

πt+1(x′) =Σxπt(x)q(x→ x′)

Stationary distribution: πt = πt+1 = π

π(x′) =Σxπ(x)q(x→ x′) for all x′

If π exists, it is unique (specific to q(x→ x′))

In equilibrium, expected “outflow” = expected “inflow”
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Inference in BN
Inference by Random AlgsDetailed balance

“Outflow” = “inflow” for each pair of states:

π(x)q(x→ x′) = π(x′)q(x′ → x) for all x, x′

Detailed balance =⇒ stationarity:

Σxπ(x)q(x→ x′) = Σxπ(x′)q(x′ → x)

= π(x′)Σxq(x′ → x)

= π(x′)

MCMC algorithms typically constructed by designing a transition
probability q that is in detailed balance with desired π
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Inference in BN
Inference by Random AlgsGibbs sampling

Sample each variable in turn, given all other variables

Sampling Xi , let X̄i be all other nonevidence variables

Current values are xi and x̄i ; e is fixed

Transition probability is given by

q(x→ x′) = q(xi , x̄i → x ′
i , x̄i ) = P(x ′

i |x̄i , e)

This gives detailed balance with true posterior P(x|e):
π(x)q(x→ x′) = P(x|e)P(x ′

i |x̄i , e) = P(xi , x̄i |e)P(x ′
i |x̄i , e)

= P(xi |x̄i , e)P(x̄i |e)P(x ′
i |x̄i , e) (chain rule)

= P(xi |x̄i , e)P(x ′
i , x̄i |e) (chain rule backwards)

= q(x′ → x)π(x′) = π(x′)q(x′ → x)
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Inference in BN
Inference by Random AlgsSummary

Exact inference by variable elimination:
– polytime on polytrees, NP-hard on general graphs
– space = time, very sensitive to topology

Approximate inference by LW, MCMC:

– PriorSampling and RejectionSampling unusable as evidence grow
– LW does poorly when there is lots of (late-in-the-order) evidence
– LW, MCMC generally insensitive to topology
– Convergence can be very slow with probabilities close to 1 or 0
– Can handle arbitrary combinations of discrete and continuous variables
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