Probabilistic Graphical Models Inference

Marco Chiarandini

Deptartment of Mathematics & Computer Science University of Southern Denmark

Slides by Stuart Russell and Peter Norvig

Outline

1. Inference in BN

2. Inference by Randomized Algorithms

Inference tasks

- Simple queries: compute posterior marginal $P(X_i|E=e)$ e.g., P(NoGas|Gauge=empty, Lights=on, Starts=false)
- Conjunctive queries: $P(X_i, X_j | \mathbf{E} = \mathbf{e}) = P(X_i | \mathbf{E} = \mathbf{e})P(X_j | X_i, \mathbf{E} = \mathbf{e})$
- Explanation: why do I need a new starter motor?

Inference by enumeration

Sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:

$$\mathbf{P}(B|j,m) = \mathbf{P}(B,j,m)/P(j,m)$$

$$= \alpha \mathbf{P}(B,j,m)$$

$$= \alpha \sum_{e} \sum_{a} \mathbf{P}(B,e,a,j,m)$$

Rewrite full joint entries using product of CPT entries:

$$\mathbf{P}(B|j,m) = \alpha \sum_{e} \sum_{a} \mathbf{P}(B)P(e)\mathbf{P}(a|B,e)P(j|a)P(m|a)$$
$$= \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a|B,e)P(j|a)P(m|a)$$

Recursive depth-first enumeration: O(n) space, $O(d^n)$ time

Enumeration algorithm

```
function Enumeration-Ask(X, e, bn) returns a distribution over X
   inputs: X, the query variable
            e. observed values for variables E
            bn, a Bayesian network with variables \{X\} \cup E \cup Y
   Q(X) \leftarrow a distribution over X, initially empty
   for each value x_i of X do
         extend e with value x_i for X
         Q(x_i) \leftarrow \text{Enumerate-All(Vars[bn], e)}
   return Normalize(\mathbb{Q}(X))
function Enumerate-All(vars, e) returns a real number
   if Empty?(vars) then return 1.0
   Y \leftarrow First(vars)
   if Y has value y in e
         then return P(y \mid parent(Y)) \times \text{Enumerate-All(Rest(vars), e)}
        else return \sum_{y} P(y \mid parent(Y)) \times Enumerate-All(Rest(vars), e_y)
              where \mathbf{e}_{v} is \mathbf{e} extended with Y = y
```

Evaluation tree

Enumeration is inefficient: repeated computation e.g., computes P(j|a)P(m|a) for each value of e

Complexity of exact inference

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- time and space cost (with variable elimination) are $O(d^k n)$
- hence time and space cost are linear in n and k bounded by a constant

Multiply connected networks:

- − can reduce 3SAT to exact inference ⇒ NP-hard
- equivalent to counting 3SAT models ⇒ #P-complete

- 1. A v B v C
- 2. C v D v ¬A
- 3. B v C v $\neg D$

Outline

1. Inference in BN

2. Inference by Randomized Algorithms

Inference by stochastic simulation

Basic idea:

- Draw N samples from a sampling distribution S
- Compute an approximate posterior probability \hat{P}
- Show this converges to the true probability P

Outline:

- Sampling from an empty network
- Rejection sampling: reject samples disagreeing with evidence
 - Likelihood weighting: use evidence to weight samples
- Markov chain Monte Carlo (MCMC): sample from a stochastic process
 - whose stationary distribution is the true posterior

Sampling from an empty network

```
function Prior-Sample(bn) returns an event sampled from bn inputs: bn, a belief network specifying joint distribution P(X_1,\ldots,X_n)

\mathbf{x} \leftarrow \text{an event with } n \text{ elements}

for i=1 to n do

x_i \leftarrow \text{a random sample from } P(X_i \mid parents(X_i))

given the values of Parents(X_i) in \mathbf{x}

return \mathbf{x}
```

Example

Probability that PriorSample generates a particular event

$$S_{PS}(x_1 \ldots x_n) = P(x_1 \ldots x_n)$$

i.e., the true prior probability

E.g.,
$$S_{PS}(t, f, t, t) = 0.5 \times 0.9 \times 0.8 \times 0.9 = 0.324 = P(t, f, t, t)$$

Proof: Let $N_{PS}(x_1 ... x_n)$ be the number of samples generated for event $x_1, ..., x_n$. Then we have

$$\lim_{N \to \infty} \hat{P}(x_1, \dots, x_n) = \lim_{N \to \infty} N_{PS}(x_1, \dots, x_n) / N$$

$$= S_{PS}(x_1, \dots, x_n)$$

$$= \prod_{i=1}^{n} P(x_i | parents(X_i)) = P(x_1 \dots x_n)$$

 \leadsto That is, estimates derived from PriorSample are consistent Shorthand: $\hat{P}(x_1, \dots, x_n) \approx P(x_1 \dots x_n)$

Rejection sampling

 $\hat{P}(X|e)$ estimated from samples agreeing with e

```
function Rejection-Sampling(X, e, bn, N) returns an estimate of P(X|e) local variables: N, a vector of counts over X, initially zero for j=1 to N do x \leftarrow \text{Prior-Sample}(bn) if x is consistent with e then N[x] \leftarrow N[x]+1 \text{ where } x \text{ is the value of } X \text{ in } x return Normalize(N[X])
```

```
E.g., estimate P(Rain|Sprinkler = true) using 100 samples 27 samples have Sprinkler = true Of these, 8 have Rain = true and 19 have Rain = false.
```

 $\hat{\mathbf{P}}(Rain|Sprinkler=true)=Normalize(\langle 8,19\rangle)=\langle 0.296,0.704\rangle$ Similar to a basic real-world empirical estimation procedure

Analysis of rejection sampling

Rejection sampling returns consistent posterior estimates

Proof:

```
 \hat{\mathbf{P}}(X|\mathbf{e}) = \alpha \mathbf{N}_{PS}(X,\mathbf{e}) \qquad \text{(algorithm defn.)} 
 = \mathbf{N}_{PS}(X,\mathbf{e})/N_{PS}(\mathbf{e}) \qquad \text{(normalized by } N_{PS}(\mathbf{e})) 
 \approx \mathbf{P}(X,\mathbf{e})/P(\mathbf{e}) \qquad \text{(property of PriorSample)} 
 = \mathbf{P}(X|\mathbf{e}) \qquad \text{(defn. of conditional probability)}
```

Problem: hopelessly expensive if $P(\mathbf{e})$ is small $P(\mathbf{e})$ drops off exponentially with number of evidence variables!

Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence

```
function Likelihood-Weighting (X, e, bn, N) returns an estimate of P(X|e)
   local variables: W, a vector of weighted counts over X, initially zero
   for j = 1 to N do
        x, w \leftarrow Weighted-Sample(bn)
        W[x] \leftarrow W[x] + w where x is the value of X in x
   return Normalize(W[X])
function Weighted-Sample(bn, e) returns an event and a weight
   x \leftarrow an event with n elements; w \leftarrow 1
   for i = 1 to n do
        if X_i has a value x_i in e
              then w \leftarrow w \times P(X_i = x_i \mid parents(X_i))
              else x_i \leftarrow a random sample from P(X_i \mid parents(X_i))
   return x, w
```

Likelihood weighting example

Likelihood weighting analysis

Likelihood weighting returns consistent estimates

Sampling probability for WeightedSample is

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | parents(Z_i))$$

Weight for a given sample z, e is

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i|parents(E_i))$$

Weighted sampling probability is

$$S_{WS}(\mathbf{z}, \mathbf{e})w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i|parents(Z_i)) \prod_{i=1}^{m} P(e_i|parents(E_i)) = P(\mathbf{z}, \mathbf{e})$$

but performance still degrades with many evidence variables because a few samples have nearly all the total weight

Summary

Approximate inference by LW:

- LW does poorly when there is lots of (late-in-the-order) evidence
- LW generally insensitive to topology
- Convergence can be very slow with probabilities close to 1 or 0
- Can handle arbitrary combinations of discrete and continuous variables

Approximate inference using MCMC

"State" of network = current assignment to all variables. Generate next state by sampling one variable given Markov blanket Sample each variable in turn, keeping evidence fixed

```
function MCMC-Ask(X, e, bn, N) returns an estimate of P(X|e)
   local variables: N[X], a vector of counts over X, initially zero
                   Z, nonevidence variables in bn, hidden + query
                   x, current state of the network, initially copied from e
   initialize x with random values for the variables in Z
   for i = 1 to N do
        N[x] \leftarrow N[x] + 1 where x is the value of X in x
        for each Z_i in Z do
             sample the value of Z_i in x from P(Z_i|mb(Z_i))
                  given the values of MB(Z_i) in x
   return Normalize(N[X])
```

Can also choose a variable to sample at random each time

The Markov chain

With Sprinkler = true, WetGrass = true, there are four states:

Wander about for a while, average what you see

Probabilistic finite state machine

MCMC example contd.

Estimate P(Rain|Sprinkler = true, WetGrass = true)

Sample *Cloudy* or *Rain* given its Markov blanket, repeat. Count number of times *Rain* is true and false in the samples.

E.g., visit 100 states 31 have Rain = true, 69 have Rain = false

 $\hat{\textbf{P}}(\textit{Rain}|\textit{Sprinkler} = \textit{true}, \textit{WetGrass} = \textit{true}) = \mathsf{Normalize}(\langle 31, 69 \rangle) = \langle 0.31, 0.69 \rangle$

Theorem

The Markov Chain approaches a stationary distribution: long-run fraction of time spent in each state is exactly proportional to its posterior probability

Markov blanket sampling

Markov blanket of *Cloudy* is *Sprinkler* and *Rain*

Markov blanket of *Rain* is *Cloudy*, *Sprinkler*, and *WetGrass*

Main computational problems:

- 1) Difficult to tell if convergence has been achieved
- 2) Can be wasteful if Markov blanket is large: $P(X_i|mb(X_i))$ won't change much (law of large numbers)

Local semantics and Markov Blanket

Local semantics: each node is conditionally independent of its nondescendants given its parents Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents

MCMC analysis: Outline

- Transition probability $q(x \rightarrow x')$
- Occupancy probability $\pi_t(\mathbf{x})$ at time t
- Equilibrium condition on π_t defines stationary distribution $\pi(\mathbf{x})$ Note: stationary distribution depends on choice of $q(\mathbf{x} \to \mathbf{x}')$
- Pairwise detailed balance on states guarantees equilibrium
- Gibbs sampling transition probability:
 sample each variable given current values of all others
 detailed balance with the true posterior
- For Bayesian networks, Gibbs sampling reduces to sampling conditioned on each variable's Markov blanket

Stationary distribution

- $\pi_t(\mathbf{x}) = \text{probability in state } \mathbf{x} \text{ at time } t$ $\pi_{t+1}(\mathbf{x}') = \text{probability in state } \mathbf{x}' \text{ at time } t+1$
- \bullet π_{t+1} in terms of π_t and $q(\mathbf{x} \to \mathbf{x}')$

$$\pi_{t+1}(\mathsf{x}') = \sum_{\mathbf{X}} \pi_t(\mathsf{x}) q(\mathsf{x} o \mathsf{x}')$$

• Stationary distribution: $\pi_t = \pi_{t+1} = \pi$

$$\pi(\mathsf{x}') = \sum_{\mathsf{X}} \pi(\mathsf{x}) q(\mathsf{x} o \mathsf{x}')$$
 for all x'

- If π exists, it is unique (specific to $q(\mathbf{x} \to \mathbf{x}')$)
- In equilibrium, expected "outflow" = expected "inflow"

Detailed balance

• "Outflow" = "inflow" for each pair of states:

$$\pi(\mathbf{x})q(\mathbf{x} \to \mathbf{x}') = \pi(\mathbf{x}')q(\mathbf{x}' \to \mathbf{x})$$
 for all \mathbf{x}, \mathbf{x}'

$$\sum_{\mathbf{x}} \pi(\mathbf{x}) q(\mathbf{x} \to \mathbf{x}') = \sum_{\mathbf{x}} \pi(\mathbf{x}') q(\mathbf{x}' \to \mathbf{x})$$

$$= \pi(\mathbf{x}') \sum_{\mathbf{x}} q(\mathbf{x}' \to \mathbf{x})$$

$$= \pi(\mathbf{x}')$$

• MCMC algorithms typically constructed by designing a transition probability q that is in detailed balance with desired π

Gibbs sampling

- Sample each variable in turn, given all other variables
- Sampling X_i , let \bar{X}_i be all other nonevidence variables
- Current values are x_i and $\bar{x_i}$; **e** is fixed
- Transition probability is given by

$$q(\mathbf{x} \to \mathbf{x}') = q(x_i, \bar{\mathbf{x}}_i \to x_i', \bar{\mathbf{x}}_i) = P(x_i'|\bar{\mathbf{x}}_i, \mathbf{e})$$

• This gives detailed balance with true posterior P(x|e):

$$\pi(\mathbf{x})q(\mathbf{x} \to \mathbf{x}') = P(\mathbf{x}|\mathbf{e})P(x_i'|\bar{\mathbf{x}}_i,\mathbf{e}) = P(x_i,\bar{\mathbf{x}}_i|\mathbf{e})P(x_i'|\bar{\mathbf{x}}_i,\mathbf{e})$$

$$= P(x_i|\bar{\mathbf{x}}_i,\mathbf{e})P(\bar{\mathbf{x}}_i|\mathbf{e})P(x_i'|\bar{\mathbf{x}}_i,\mathbf{e}) \text{ (chain rule)}$$

$$= P(x_i|\bar{\mathbf{x}}_i,\mathbf{e})P(x_i',\bar{\mathbf{x}}_i|\mathbf{e}) \text{ (chain rule backwards)}$$

$$= q(\mathbf{x}' \to \mathbf{x})\pi(\mathbf{x}') = \pi(\mathbf{x}')q(\mathbf{x}' \to \mathbf{x})$$

Summary

Exact inference by variable elimination:

- polytime on polytrees, NP-hard on general graphs
- space = time, very sensitive to topology

Approximate inference by LW, MCMC:

- PriorSampling and RejectionSampling unusable as evidence grow
 - LW does poorly when there is lots of (late-in-the-order) evidence
 - LW, MCMC generally insensitive to topology
 - Convergence can be very slow with probabilities close to 1 or 0
 - Can handle arbitrary combinations of discrete and continuous variables