DM554/DM545 Linear and Integer Programming

Lecture 10 IP Modeling Formulations, Relaxations

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Modeling Formulations

1. Modeling

Assignment Problem Set Problems Graph Problems Modeling Tricks

2. Formulations

Uncapacited Facility Location Alternative Formulations

1. Modeling

Assignment Problem Set Problems Graph Problems Modeling Tricks

1. Modeling Assignment Problem

Set Problems Graph Problems Modeling Tricks

1. Modeling

Set Problems Graph Problems

. Modeling Tricks

1. Modeling

Assignment Problem Set Problems Graph Problems Modeling Tricks

Matching

Definition (Matching Theory Terminology)
Matching: set of pairwise non adjacent edges
Covered (vertex): a vertex is covered by a matching M if it is incident to an edge in M
Perfect (matching): if M covers each vertex in G
Maximal (matching): if M cannot be extended any further
Maximum (matching): if M covers as many vertices as possible
Matchable (graph): if the graph G has a perfect matching

$$\begin{array}{ll} \max & \sum\limits_{v \in V} w_e x_e \\ & \sum\limits_{e \in E: v \in e} x_e \leq 1 \quad \forall v \in V \\ & x_e \in \{0,1\} \; \forall e \in E \end{array}$$

Special case: bipartite matching \equiv assignment problems

Vertex Cover

Select a subset $S \subseteq V$ such that each edge has at least one end vertex in S.

$$\min \sum_{\substack{v \in V \\ x_v + x_u \ge 1 \\ x_v \in \{0, 1\}}} \sum_{\substack{\forall u, v \in V, uv \in E \\ \forall v \in V}}$$

Approximation algorithm: set S derived from the LP solution in this way:

 $S_{LP} = \{ v \in V : x_v^* \ge 1/2 \}$

(it is a cover since $x_v^* + x_u^* \ge 1$ implies $x_v^* \ge 1/2$ or $x_u^* \ge 1/2$)

Proposition

The LP rounding approximation algorithm gives a 2-approximation: $|S_{LP}| \leq 2|S_{OPT}|$ (at most as bad as twice the optimal solution)

Proof: Let \bar{x} be opt to IP. Then $\sum x_v^* \leq \sum \bar{x}_v$. $|S_{LP}| = \sum_{v \in S_{LP}} 1 \leq \sum_{v \in V} 2x_v^*$ since $x_v^* \geq 1/2$ for each $v \in S_{LP}$ $|S_{LP}| \leq 2 \sum_{v \in V} x_v^* \leq 2 \sum_{v \in V} \bar{x}_v = 2|S_{OPT}|$

Maximum independent Set

Find the largest subset $S \subseteq V$ such that the induced graph has no edges

$$\max \sum_{\substack{v \in V} \\ x_v + x_u \leq 1 \\ x_v = \{0, 1\} \forall u, v \in V, uv \in E \\ \forall v \in V$$

Optimal sol of LP relaxation sets $x_v = 1/2$ for all variables and has value |V|/2.

What is the value of an optimal IP solution of a complete graph?

LP relaxation gives an O(n)-approximation (almost useless)

Traveling Salesman Problem

- Find the cheapest movement for a drilling, welding, drawing, soldering arm as, for example, in a printed circuit board manufacturing process or car manufacturing process
- *n* locations, *c_{ij}* cost of travel

Variables:

$$x_{ij} = \begin{cases} 1 \\ 0 \end{cases}$$

Objective:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

Constraints:

 $\sum_{\substack{j:j\neq i\\j:j\neq i}} x_{ij} = 1 \qquad \qquad \forall i = 1, \dots, n$ $\sum_{\substack{i:i\neq j}} x_{ij} = 1 \qquad \qquad \forall j = 1, \dots, n$

• cut set constraints

 $\sum_{i \in S} \sum_{j \notin S} x_{ij} \ge 1 \qquad \qquad \forall S \subset N, S \neq \emptyset$

• subtour elimination constraints

$$\sum_{i\in S}\sum_{j\in S}x_{ij}\leq |S|-1$$

 $\forall S \subset N, 2 \leq |S| \leq n-1$

1. Modeling

Assignment Problem Set Problems Graph Problems Modeling Tricks

Objective function and/or constraints do not appear to be linear?

- Absolute values
- Minimize the largest function value
- Maximize the smallest function value
- Constraints include variable division
- Constraints are either/or
- A variable must take one of several candidate values

Modeling Tricks I

Minimize the largest of a number of function values:

min $\max\{f(x_1),\ldots,f(x_n)\}$

• Introduce an auxiliary variable z:

 $\begin{array}{l} \min \quad z \\ \text{s. t. } f(x_1) \leq z \\ \quad f(x_2) \leq z \end{array}$

Modeling Tricks II

Constraints include variable division:

• Constraint of the form

$$\frac{a_1x + a_2y + a_3z}{d_1x + d_2y + d_3z} \le b$$

• Rearrange:

$$a_1x + a_2y + a_3z \le b(d_1x + d_2y + d_3z)$$

which gives:

$$(a_1 - bd_1)x + (a_2 - bd_2)y + (a_3 - bd_3)z \le 0$$

III "Either/Or Constraints"

In conventional mathematical models, the solution must satisfy all constraints.

Suppose that your constraints are "either/or":

 $a_1x_1+a_2x_2\leq b_1$ or $d_1x_1+d_2x_2\leq b_2$

Introduce new variable $y \in \{0, 1\}$ and a large number M:

 $\begin{aligned} a_1 x_1 + a_2 x_2 &\leq b_1 + My & \text{if } y = 0 \text{ then this is active} \\ d_1 x_1 + d_2 x_2 &\leq b_2 + M(1-y) & \text{if } y = 1 \text{ then this is active} \end{aligned}$

Binary integer programming allows to model alternative choices:

• Eg: 2 feasible regions, ie, disjunctive constraints, not possible in LP. introduce *y* auxiliary binary variable and *M* a big number:

 $\begin{array}{ll} Ax \leq b + My & \mbox{if } y = 0 \mbox{ then this is active} \\ A'x \leq b' + M(1-y) & \mbox{if } y = 1 \mbox{ then this is active} \end{array}$

IV "Either/Or Constraints"

Generally:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \ldots + a_{1m}x_m \le d_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \ldots + a_{2m}x_m \le d_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{N2}x_2 + a_{N3}x_3 + \ldots + a_{Nm}x_m \le d_N$$

Exactly *K* of the *N* constraints must be satisfied. Introduce binary variables y_1, y_2, \ldots, y_N and a large number *M*

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \ldots + a_{1m}x_m \le d_1 + My_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \ldots + a_{2m}x_m \le d_2 + My_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{N2}x_2 + a_{N3}x_3 + \ldots + a_{Nm}x_m \le d_N + My_N$$

$$y_1+y_2+\ldots y_N=N-K$$

K of the y-variables are 0, so K constraints must be satisfied

IV "Either/Or Constraints"

At least $h \le k$ of $\sum_{j=1}^{n} a_{ij}x_j \le b_i$, i = 1, ..., k must be satisfied introduce y_i , i = 1, ..., k auxiliary binary variables

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i + M y_i$$
$$\sum_{i} y_i \le k - h$$

V "Possible Constraints Values"

A constraint must take on one of N given values:

$$a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3} + \ldots + a_{m}x_{m} = d_{1} \text{ or}$$

$$a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3} + \ldots + a_{m}x_{m} = d_{2} \text{ or}$$

$$\vdots$$

$$a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3} + \ldots + a_{m}x_{m} = d_{N}$$

Introduce binary variables y_1, y_2, \ldots, y_N :

$$a_1x_1 + a_2x_2 + a_3x_3 + \ldots + a_mx_m = d_1y_1 + d_2y_2 + \ldots d_Ny_N$$

 $y_1 + y_2 + \ldots y_N = 1$

1. Modeling

Assignment Problem Set Problems Graph Problems Modeling Tricks

2. Formulations

Uncapacited Facility Location Alternative Formulations

1. Modeling

Assignment Problem Set Problems Graph Problems Modeling Tricks

Uncapacited Facility Location (UFL)

Modeling Formulations

Given:

- depots $N = \{1, \ldots, n\}$
- clients $M = \{1, \ldots, m\}$
- f_j fixed cost to use depot j
- transport cost for all orders c_{ij}

Task: Which depots to open and which depots serve which client

Variables: $y_j = \begin{cases} 1 & \text{if depot open} \\ 0 & \text{otherwise} \end{cases}$, x_{ij} fraction of demand of *i* satisfied by *j*

Objective:

$$\min\sum_{i\in M}\sum_{j\in N}c_{ij}x_{ij}+\sum_{j\in N}f_jy_j$$

Constraints:

 $\sum_{j=1}^{n} x_{ij} = 1 \qquad \qquad \forall i = 1, \dots, m$ $\sum_{i \in M} x_{ij} \le m y_j \qquad \qquad \forall j \in N$

1. Modeling

Assignment Problem Set Problems Graph Problems Modeling Tricks

Good and Ideal Formulations

Definition (Formulation)

A polyhedron $P \subseteq \mathbb{R}^{n+p}$ is a formulation for a set $X \subseteq \mathbb{Z}^n \times \mathbb{R}^p$ if and only if $X = P \cap (\mathbb{Z}^n \times \mathbb{R}^p)$

That is, if it does not leave out any of the solutions of the feasible region X.

There are infinite formulations

Definition (Convex Hull)

Given a set $X \subseteq \mathbb{Z}^n$ the convex hull of X is defined as:

$$\operatorname{conv}(X) = \left\{ \mathbf{x} : \mathbf{x} = \sum_{i=1}^{t} \lambda_i \mathbf{x}^i, \sum_{i=1}^{t} \lambda_i = 1, \lambda_i \ge 0, \text{ for } i = 1, \dots, t \right.$$
for all finite subsets $\{\mathbf{x}^1, \dots, \mathbf{x}^t\}$ of X

Proposition

conv(X) is a polyhedron (ie, representable as $Ax \leq b$)

Proposition

```
Extreme points of conv(X) all lie in X
```

Hence:

$$\max\{\mathbf{c}^{\mathsf{T}}\mathbf{x}:\mathbf{x}\in X\}\equiv\max\{\mathbf{c}^{\mathsf{T}}\mathbf{x}:\mathbf{x}\in\operatorname{conv}(X)\}$$

However it might require exponential number of inequalities to describe $\operatorname{conv}(X)$

What makes a formulation better than another?

 $X \subseteq \operatorname{conv}(X) \subseteq P_1 \subset P_2$ $P_1 \text{ is better than } P_2$

Definition

Given a set $X \subseteq \mathbb{R}^n$ and two formulations P_1 and P_2 for X, P_1 is a better formulation than P_2 if $P_1 \subset P_2$

Example

$$P_1 = \mathsf{UFL} \text{ with } \sum_{i \in M} x_{ij} \le my_j \quad \forall j \in N$$

$$P_2 = \mathsf{UFL} \text{ with } x_{ij} \le y_j \quad \forall i \in M, j \in N$$

 $P_2 \subset P_1$

- $P_2 \subseteq P_1$ because summing $x_{ij} \leq y_j$ over $i \in M$ we obtain $\sum_{i \in M} x_{ij} \leq my_j$
- P₂ ⊂ P₁ because there exists a point in P₁ but not in P₂: m = 6 = 3 · 2 = k · n

$$\begin{aligned} x_{10} &= 1, \, x_{20} = 1, \, x_{30} = 1, \\ x_{41} &= 1, \, x_{51} = 1, \, x_{61} = 1 \end{aligned} \qquad \qquad \begin{aligned} \sum_i x_{i0} &\leq 6y_0 \ y_0 = 1/2 \\ \sum_i x_{i1} &\leq 6y_1 \ y_1 = 1/2 \end{aligned}$$

Resume

Modeling Formulations

1. Modeling

Assignment Problem Set Problems Graph Problems Modeling Tricks

2. Formulations

Uncapacited Facility Location Alternative Formulations