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FormulationsMatching

Definition (Matching Theory Terminology)

Matching: set of pairwise non adjacent edges
Covered (vertex): a vertex is covered by a matching M if it is incident to an

edge in M
Perfect (matching): if M covers each vertex in G
Maximal (matching): if M cannot be extended any further
Maximum (matching): if M covers as many vertices as possible
Matchable (graph): if the graph G has a perfect matching

max
∑

v∈V
wexe∑

e∈E :v∈e
xe ≤ 1 ∀v ∈ V

xe ∈ {0, 1} ∀e ∈ E

Special case: bipartite matching ≡ assignment problems
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FormulationsVertex Cover

Select a subset S ⊆ V such that each edge has at least one end vertex in S .

min
∑

v∈V
xv

xv + xu ≥ 1 ∀u, v ∈ V , uv ∈ E
xv ∈ {0, 1} ∀v ∈ V

Approximation algorithm: set S derived from the LP solution in this way:

SLP = {v ∈ V : x∗v ≥ 1/2}

(it is a cover since x∗v + x∗u ≥ 1 implies x∗v ≥ 1/2 or x∗u ≥ 1/2)

Proposition

The LP rounding approximation algorithm gives a 2-approximation:
|SLP | ≤ 2|SOPT | (at most as bad as twice the optimal solution)

Proof: Let x̄ be opt to IP. Then
∑

x∗v ≤
∑

x̄v .
|SLP | =

∑
v∈SLP

1 ≤
∑

v∈V 2x∗v since x∗v ≥ 1/2 for each v ∈ SLP
|SLP | ≤ 2

∑
v∈V x∗v ≤ 2

∑
v∈V x̄v = 2|SOPT |
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Find the largest subset S ⊆ V such that the induced graph has no edges

max
∑

v∈V
xv

xv + xu ≤ 1 ∀u, v ∈ V , uv ∈ E
xv = {0, 1} ∀v ∈ V

Optimal sol of LP relaxation sets xv = 1/2 for all variables and has value
|V |/2.

What is the value of an optimal IP solution of a complete graph?

LP relaxation gives an O(n)-approximation (almost useless)
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FormulationsTraveling Salesman Problem

• Find the cheapest movement for a drilling, welding, drawing, soldering
arm as, for example, in a printed circuit board manufacturing process or
car manufacturing process

• n locations, cij cost of travel

Variables:

xij =

{
1
0

Objective:

n∑
i=1

n∑
j=1

cijxij
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Constraints:

• ∑
j :j 6=i

xij = 1 ∀i = 1, . . . , n

∑
i :i 6=j

xij = 1 ∀j = 1, . . . , n

• cut set constraints∑
i∈S

∑
j 6∈S

xij ≥ 1 ∀S ⊂ N, S 6= ∅

• subtour elimination constraints∑
i∈S

∑
j∈S

xij ≤ |S | − 1 ∀S ⊂ N, 2 ≤ |S | ≤ n − 1
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FormulationsModeling Tricks

Objective function and/or constraints do not appear to be linear?
• Absolute values
• Minimize the largest function value
• Maximize the smallest function value
• Constraints include variable division
• Constraints are either/or
• A variable must take one of several candidate values
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Minimize the largest of a number of function values:

min max{f (x1), . . . , f (xn)}

• Introduce an auxiliary variable z :
min z
s. t. f (x1) ≤ z

f (x2) ≤ z
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Constraints include variable division:
• Constraint of the form

a1x + a2y + a3z
d1x + d2y + d3z

≤ b

• Rearrange:

a1x + a2y + a3z ≤ b(d1x + d2y + d3z)

which gives:

(a1 − bd1)x + (a2 − bd2)y + (a3 − bd3)z ≤ 0
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FormulationsIII “Either/Or Constraints”

In conventional mathematical models, the solution must satisfy all
constraints.
Suppose that your constraints are “either/or”:

a1x1 + a2x2 ≤ b1 or
d1x1 + d2x2 ≤ b2

Introduce new variable y ∈ {0, 1} and a large number M:

a1x1 + a2x2 ≤ b1 + My if y = 0 then this is active
d1x1 + d2x2 ≤ b2 + M(1− y) if y = 1 then this is active
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Binary integer programming allows to model alternative choices:

• Eg: 2 feasible regions, ie, disjunctive constraints, not possible in LP.
introduce y auxiliary binary variable and M a big number:

Ax ≤ b + My if y = 0 then this is active
A′x ≤ b′ + M(1− y) if y = 1 then this is active
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FormulationsIV “Either/Or Constraints”

Generally:

a11x1 + a12x2 + a13x3 + . . .+ a1mxm ≤ d1
a21x1 + a22x2 + a23x3 + . . .+ a2mxm ≤ d2

...
am1x1 + aN2x2 + aN3x3 + . . .+ aNmxm ≤ dN

Exactly K of the N constraints must be satisfied.
Introduce binary variables y1, y2, . . . , yN and a large number M

a11x1 + a12x2 + a13x3 + . . .+ a1mxm ≤ d1 + My1
a21x1 + a22x2 + a23x3 + . . .+ a2mxm ≤ d2 + My2

...
am1x1 + aN2x2 + aN3x3 + . . .+ aNmxm ≤ dN + MyN

y1 + y2 + . . . yN = N − K

K of the y -variables are 0, so K constraints must be satisfied
18
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At least h ≤ k of
n∑

j=1
aijxj ≤ bi , i = 1, . . . , k must be satisfied

introduce yi , i = 1, ..., k auxiliary binary variables

n∑
j=1

aijxj ≤ bi + Myi∑
i

yi ≤ k − h
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FormulationsV “Possible Constraints Values”

A constraint must take on one of N given values:

a1x1 + a2x2 + a3x3 + . . .+ amxm = d1 or
a1x1 + a2x2 + a3x3 + . . .+ amxm = d2 or

...
a1x1 + a2x2 + a3x3 + . . .+ amxm = dN

Introduce binary variables y1, y2, . . . , yN :

a1x1 + a2x2 + a3x3 + . . .+ amxm = d1y1 + d2y2 + . . . dNyN

y1 + y2 + . . . yN = 1
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FormulationsUncapacited Facility Location (UFL)

Given:

• depots N = {1, . . . , n}
• clients M = {1, . . . ,m}
• fj fixed cost to use depot j

• transport cost for all orders cij

Task: Which depots to open and which
depots serve which client

Variables: yj =

{
1 if depot open

0 otherwise
, xij fraction of demand of i satisfied by j

Objective:

min
∑
i∈M

∑
j∈N

cijxij +
∑
j∈N

fjyj

Constraints:
n∑

j=1

xij = 1 ∀i = 1, . . . ,m

∑
i∈M

xij ≤ myj ∀j ∈ N
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FormulationsGood and Ideal Formulations

Definition (Formulation)

A polyhedron P ⊆ Rn+p is a formulation for a set X ⊆ Zn × Rp if and only if
X = P ∩ (Zn × Rp)

That is, if it does not leave out any of the solutions of the feasible region X .

There are infinite formulations

Definition (Convex Hull)

Given a set X ⊆ Zn the convex hull of X is defined as:

conv(X ) =
{
x : x =

t∑
i=1

λixi ,

t∑
i=1

λi = 1, λi ≥ 0, for i = 1, . . . , t,

for all finite subsets {x1, . . . , xt} of X
}
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Proposition

conv(X ) is a polyhedron (ie, representable as Ax ≤ b)

Proposition

Extreme points of conv(X ) all lie in X

Hence:

max{cTx : x ∈ X} ≡ max{cTx : x ∈ conv(X )}

However it might require exponential number of inequalities to describe
conv(X )
What makes a formulation better than another?

X ⊆ conv(X ) ⊆ P1 ⊂ P2

P1 is better than P2

Definition
Given a set X ⊆ Rn and two formulations P1 and P2 for X , P1 is a better
formulation than P2 if P1 ⊂ P2

26



Modeling
Formulations

Example

P1 = UFL with
∑

i∈M xij ≤ myj ∀j ∈ N
P2 = UFL with xij ≤ yj ∀i ∈ M, j ∈ N

P2 ⊂ P1

• P2 ⊆ P1 because summing xij ≤ yj over i ∈ M we obtain∑
i∈M xij ≤ myj

• P2 ⊂ P1 because there exists a point in P1 but not in P2:
m = 6 = 3 · 2 = k · n

x10 = 1, x20 = 1, x30 = 1,
x41 = 1, x51 = 1, x61 = 1

∑
i xi0 ≤ 6y0 y0 = 1/2∑
i xi1 ≤ 6y1 y1 = 1/2
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