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A few Remarks for Assignment 1

e summarize and comment the results/plots

e In PS, report how many assets are to be bought in task 1 and 2
e In PS, meaning of plots

e Try to use single letter for name of variables

e use <, not <=

e x[t] is programming language, x; is math language

e f(t) is a function, not an indexed variable/parameter

e define all variables, eg, y € R

e Vt must be completed by the domain of t, eg, t =1..3, t € T
e print your reports in double sided papers

e In LaTeX use \begin{array} or \begin{align} to write your models
e Be short!

e Resume your model in a compact way

e Annotate PDF: MacOSX, Win, Linux
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Relaxations

Optimality and Relaxation Well Solved Problems
z=max{c(x):xe X CZ"}

How can we prove that x* is optimal?

z
Zis UB
zis LB ‘
stop when z — z < ¢ z

e Primal bounds (here lower bounds): every feasible solution gives a primal
bound
may be easy or hard to find, heuristics

e Dual bounds (here upper bounds): Relaxations

Optimality gap:

pb — db

_ 1 f S |
gap nf{z].z € [db. pb]}( 00) or a minimization problem

(Iif pb > 0 and db > 0 then %. If db = pb = 0 then gap = 0. If no feasible sol
found or db < 0 < pb then gap is not computed.)
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Proposition

(RP) zR = max{f(x) : x € T C R"} is a relaxation of
(IP) z = max{c(x) :x € X CR"} if:

(i) X Tor

(i) f(x) > c(x)¥xe X

In other terms:

maxye 1 ¢(X)
er flx) = { maxyxex f(x) } = X c(x)

e T: candidate solutions;
e X C T feasible solutions;
o f(x) > c(x)
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Relaxations Well Solved Problems

How to construct relaxations?

1 IP:max{c"x:x€ PNZ"},P={ceR": Ax < b}
LP:max{c"x:x € P}
Better formulations give better bounds (P C P»)

Proposition
(i) If a relaxation RP is infeasible, the original problem IP is infeasible.

(ii) Let x* be optimal solution for RP. If x* € X and f(x*) = c(x*) then
x* is optimal for IP.

2. Combinatorial relaxations to easy problems that can be solved rapidly
Eg: TSP to Assignment problem Eg: Symmetric TSP to 1-tree
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3. Lagrangian relaxation
P : z:max{ch:Ax§b7x€X§Z”}

LR : z(u) = max{c"x+u(b — Ax) : x € X}

z(u) >z Yu >0

4. Duality:

Definition
Two problems:
z = max{c(x) : x € X} w = min{w(u) : u € U}

form a weak-dual pair if c(x) < w(u) for all x € X and all u € U.
When z = w they form a strong-dual pair
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Proposition

z=max{c"x: Ax < b,x € Z7} and w'¥ = min{ub” : uA > c,u € RT}
(e, dual of linear relaxation) form a weak-dual pair.

Proposition
Let IP and D be weak-dual pair:
(i) If D is unbounded, then IP is infeasible
(ii) Ifx* € X and u* € U satisfy c(x*) = w(u*) then x* is optimal for IP
and u* is optimal for D.

V.

The advantage is that we do not need to solve an LP like in the LP relaxation
to have a bound, any feasible dual solution gives a bound.



Examples

Weak pairs:
Matching: z=max{17x: Ax <1,x € Z7}
V. Covering: w =min{17y:yTA>1ye VA

Proof: consider LP relaxations, then z < ztF = w
(strong when graphs are bipartite)

Weak pairs:
Packing: z=max{1"x: Ax<1,xeZ}

}

LP ~

S. Covering: w=min{1l7y: ATy > 1y e Z7}

w.
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Relaxations

Sepa ration problem Well Solved Problems

max{c”x : x € X} = max{c"x : x € conv(X)}
X CZ", P a polyhedron P CR" and X = PN Z"
Definition (Separation problem for a COP)

Given x* € P is x* € conv(X)? If not find an inequality ax < b satisfied by
all points in X but violated by the point x*.

(Farkas' lemma states the existence of such an inequality.)
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Relaxation

Properties of Easy Problems WellScived Probiems

Four properties that often go together:
Definition
(i) Efficient optimization property: 3 a polynomial algorithm for
max{cx : x € X C R"}

(ii) Strong duality property: 3 strong dual D min{w(u) : u € U} that allows
to quickly verify optimality

(i) Efficient separation problem: 3 efficient algorithm for separation problem

(iv) Efficient convex hull property: a compact description of the convex hull
is available

Example:
If explicit convex hull  strong duality holds

efficient separation property (just description of
conv(X))
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Theoretical analysis to prove results about

e strength of certain inequalities that are facet defining

2 ways

e descriptions of convex hull of some discrete X C Z*

several ways, we see one next

Example
Let

X:{(x.,y)ERT><]H%1:Z:X;Smy,><,-§1fori:1....7

i=1

P={(x,y) eR}] xR : x; <y fori

Polyhedron P describes conv(X)
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Relaxation

Totally Unimodular Matrices W 5o Problems

When the LP solution to this problem
IP:max{c"x: Ax < b,x € Z}

with all data integer will have integer solution?

Agxg +Anxy = b

b
L
| |
0,b
L xy =0~ Agxg = b,
b Ag m x m non singular matrix
f—————— A ————— |— = —-
XB > 0
¢t 1 ¢t 1110

Cramer’s rule for solving systems of linear equations:
eb

ae
fd f adj
ab| x| _Je . — ] y = ¢ «— A-lp — AZ’b
cd| |y f ab ab B det(Ag)
cd cd
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Definition
e A square integer matrix B is called unimodular (UM) if det(B) = £1

e An integer matrix A is called totally unimodular (TUM) if every square,
nonsingular submatrix of A is UM

Proposition
o If Ais TUM then all vertices of Ri(A) = {x : Ax = b,x > 0} are integer
if b is integer
o If Ais TUM then all vertices of Ry(A) = {x : Ax < b,x > 0} are integer
if b is integer.

v

Proof: if Ais TUM then [Ai/] is TUM
Any square, nonsingular submatrix C of [Ail] can be written as

Bi0
- [8]

where B is square submatrix of A. Hence det(C) = det(B) = £1
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Proposition
The transpose matrix AT of a TUM matrix A is also TUM.

Theorem (Sufficient condition)
An integer matrix A with is TUM if
1. aj € {0,—1,41} forall i,j
2. each column contains at most two non-zero coefficients () ", |a;| < 2)

3. if the rows can be partitioned into two sets |1, |, such that:

e if a column has 2 entries of same sign, their rows are in different sets
e if a column has 2 entries of different signs, their rows are in the

same set )
01000
1-10 L=1-10 01111
1-1 10 0 1
& 1] 0 11 010 10111
1 01 0o 1o 10010

10000
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Proof: by induction

Basis: one matrix of one element {41, —1} is TUM
Induction: let C be of size k.
If C has column with all Os then it is singular.

If a column with only one 1 then expand on that by induction
If 2 non-zero in each column then

Vj:Za,-j:Za,-j

i€h i€l

but then linear combination of rows and det(C) =0
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Other matrices with integrality property:
e TUM

Balanced matrices

e Perfect matrices

o Integer vertices

Defined in terms of forbidden substructures that represent fractionating
possibilities.

Proposition

A is always TUM if it comes from

e node-edge incidence matrix of undirected bipartite graphs
(ie, no odd cycles) (h = U, =V ,B = (U,V,E))

e node-arc incidence matrix of directed graphs (I, = ()

Eg: Shortest path, max flow, min cost flow, bipartite weighted matching
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