DM545 Linear and Integer Programming

> Lecture 12 Network Flows

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Network Flows Duality

1. (Minimum Cost) Network Flows

2. Duality in Network Flow Problems

Network Flows Duality

1. (Minimum Cost) Network Flows

2. Duality in Network Flow Problems

Terminology

Network: • directed graph D = (V, A)

- arc, directed link, from tail to head
- lower bound $I_{ij} > 0$, $\forall ij \in A$, capacity $u_{ij} \ge I_{ij}$, $\forall ij \in A$
- cost c_{ij} , linear variation (if $ij \notin A$ then $l_{ij} = u_{ij} = 0, c_{ij} = 0$)

• balance vector b(i), b(i) < 0 supply node (source), b(i) > 0demand node (sink, tank), b(i) = 0 transhipment node (assumption $\sum_i b(i) = 0$) $N = (V, A, \mathbf{l}, \mathbf{u}, \mathbf{b}, \mathbf{c})$

Network Flows

Flow $\mathbf{x} : A \to \mathbb{R}$ balance vector of $\mathbf{x} : b_{\mathbf{x}}(v) = \sum_{uv \in A} x_{uv} - \sum_{vw \in A} x_{vw}, \forall v \in V$ $b_{\mathbf{x}}(v) \begin{cases} > 0 \quad \text{sink/target/tank} \\ < 0 \quad \text{source} \\ = 0 \quad \text{balanced} \end{cases}$

(generalizes the concept of path with $b_x(v) = \{0, 1, -1\}$)

 $\begin{array}{ll} \mbox{feasible} & l_{ij} \leq x_{ij} \leq u_{ij}, \ b_{\sf x}(i) = b(i) \\ \mbox{cost} & {\sf c}^{\top} {\sf x} = \sum_{ij \in \mathcal{A}} c_{ij} x_{ij} \ \mbox{(varies linearly with } {\sf x}) \end{array}$

If *iji* is a 2-cycle and all $I_{ij} = 0$, then at least one of x_{ij} and x_{ji} is zero.

Example

Feasible flow of cost 109

Minimum Cost Network Flows

Find cheapest flow through a network in order to satisfy demands at certain nodes from available supplier nodes. **Variables:**

 $x_{ij} \in \mathbb{R}_0^+$

Objective:

$$\min\sum_{ij\in A}c_{ij}x_{ij}$$

 $\begin{array}{l} \min \, \mathbf{c}^{\mathcal{T}} \mathbf{x} \\ N \mathbf{x} \ = \mathbf{b} \\ \mathbf{0} \le \mathbf{x} \le \mathbf{u} \end{array}$

Constraints: mass balance + flow bounds

$$\sum_{j:ij\in A} x_{ij} - \sum_{j:ji\in A} x_{ji} = b(i) \quad \forall i \in V$$
$$0 \le x_{ij} \le u_{ij}$$

N node arc incidence matrix

(assumption: all values are integer, we can multiply if rational)

Reductions/Transformations

Network Flows Duality

Lower bounds

Let $N = (V, A, \mathbf{I}, \mathbf{u}, \mathbf{b}, \mathbf{c})$

$$N' = (V, A, l', u', b', c)$$

$$b'(i) = b(i) + l_{ij}$$

$$b'(j) = b(j) - l_{ij}$$

$$u'_{ij} = u_{ij} - l_{ij}$$

$$l'_{ij} = 0$$

$$b(i) + l_{ij} \quad l_{ij} = 0 \quad b(j) - l_{ij}$$

$$\mathbf{c}^T \mathbf{x}$$

$$\mathbf{c}^{T}\mathbf{x}' + \sum_{ij \in A} c_{ij} l_{ij}$$

Network Flows Duality

Undirected arcs

Vertex splitting

If there are bounds and costs of flow passing thorugh vertices where b(v) = 0 (used to ensure that a node is visited):

 $N = (V, A, \mathbf{I}, \mathbf{u}, \mathbf{c}, \mathbf{I}^*, \mathbf{u}^*, \mathbf{c}^*)$

From D to D_{ST} as follows:

 $\begin{array}{l} \forall v \in V \quad \rightsquigarrow v_s, v_t \in V(D_{ST}) \text{ and } v_t v_s \in A(D_{ST}) \\ \forall xy \in A(D) \rightsquigarrow x_s y_t \in A(D_{ST}) \end{array}$

 $\forall v \in V \text{ and } v_t v_s \in A_{ST} \rightsquigarrow h'(v_t, v_s) = h^*(v), \ h^* \in \{l^*, u^*, c^*\} \\ \forall xy \in A \text{ and } x_s y_t \in A_{ST} \rightsquigarrow h'(x_s y_t) = h(x, y), \ h \in \{l, u, c\}$

If b(v) = 0, then $b'(v_s) = b'(v_t) = 0$ If b(v) < 0, then $b'(v_t) = 0$ and $b'(v_s) = b(v)$ If b(v) > 0, then $b'(v_t) = b(v)$ and $b'(v_s) = 0$ (Note this slide is made with the different convenition that sources have positive balance. What should change to make it compliant with our convention of negative balance?)

12

$$(s, t)-flow:$$

$$b_{x}(v) = \begin{cases} -k & \text{if } v = s \\ k & \text{if } v = t \\ 0 & \text{otherwise} \end{cases} |\mathbf{x}| = |b_{x}(s)|$$

$$b(s) = \sum_{v:b(v) < 0} b(v) = -M$$

$$b(t) = \sum_{v:b(v) > 0} b(v) = M$$

 $\exists \text{ feasible flow in } N \iff \exists (s, t) \text{-flow in } N_{st} \text{ with } |x| = M \\ \iff \text{ max flow in } N_{st} \text{ is } M$

Residual Network

Residual Network $N(\mathbf{x})$: given that a flow \mathbf{x} already exists, how flow excess can be moved in G? Replace arc $ij \in N$ with arcs:

 $(N, \mathbf{c}, \mathbf{u}, \mathbf{x})$

 $(N(\mathbf{x}), \mathbf{c}')$

Special cases

Shortest path problem path of minimum cost from s to t with costs ≤ 0 b(s) = -1, b(t) = 1, b(i) = 0if to any other node? $b(s) = -(n-1), b(i) = 1, u_{ii} = n-1$

Max flow problem incur no cost but restricted by bounds steady state flow from s to t $b(i) = 0 \ \forall i \in V, \quad c_{ij} = 0 \ \forall ij \in A \quad ts \in A$ $c_{ts} = -1, \quad u_{ts} = \infty$

Assignment problem min weighted bipartite matching,

$$\begin{split} |V_1| &= |V_2|, A \subseteq V_1 \times V_2 \\ c_{ij} \\ b(i) &= -1 \ \forall i \in V_1 \qquad b(i) = 1 \ \forall i \in V_2 \qquad u_{ij} = 1 \ \forall ij \in A \end{split}$$

Special cases

Transportation problem/Transhipment distribution of goods, warehouses-costumers $|V_1| \neq |V_2|, \qquad u_{ij} = \infty \text{ for all } ij \in A$ $\min \sum_i c_{ij} x_{ij}$ $\sum_i x_{ij} \geq b_j \qquad \forall j$ $\sum_j x_{ij} \leq a_i \qquad \forall i$ $x_{ij} \geq 0$ Multi-commodity flow problem ship several commodities using the same network, different origin destination pairs separate mass balance constraints, share capacity constraints, min overall flow

$$\begin{array}{l} \min \sum_{k} \mathbf{c}^{k} \mathbf{x}^{k} \\ N \mathbf{x}^{k} \geq \mathbf{b}^{k} \quad \forall k \\ \sum_{k} \mathbf{x}^{k}_{ij} \leq \mathbf{u}_{ij} \quad \forall ij \in A \\ 0 \leq \mathbf{x}^{k}_{ij} \leq \mathbf{u}^{k}_{ij} \end{array}$$

What is the structure of the matrix now? Is the matrix still $\mathsf{TUM}?$

Application Example Ship loading problem

Plenty of applications. See Ahuja Magnanti Orlin, Network Flows, 1993

Network Flows

- A cargo company (eg, Maersk) uses a ship with a capacity to carry at most r units of cargo.
- The ship sails on a long route (say from Southampton to Alexandria) with several stops at ports in between.
- At these ports cargo may be unloaded and new cargo loaded.
- At each port there is an amount b_{ij} of cargo which is waiting to be shipped from port *i* to port j > i
- Let f_{ij} denote the income for the company from transporting one unit of cargo from port *i* to port *j*.
- The goal is to plan how much cargo to load at each port so as to maximize the total income while never exceeding ship's capacity.

- *n* number of stops including the starting port and the terminal port.
- $N = (V, A, I \equiv 0, u, c)$ be the network defined as follows:
 - $V = \{v_1, v_2, ..., v_n\} \cup \{v_{ij} : 1 \le i < j \le n\}$
 - $A = \{v_1 v_2, v_2 v_3, \dots v_{n-1} v_n\} \cup \{v_{ij} v_i, v_{ij} v_j : 1 \le i < j \le n\}$
 - capacity: $u_{v_iv_{i+1}} = r$ for i = 1, 2, ..., n-1 and all other arcs have capacity ∞ .
 - cost: $c_{v_{ij}v_i} = -f_{ij}$ for $1 \le i < j \le n$ and all other arcs have cost zero (including those of the form $v_{ij}v_j$)
 - balance vector: $b(v_{ij}) = -b_{ij}$ for $1 \le i < j \le n$ and the balance vector of $v_i = b_{1i} + b_{2i} + \dots + b_{i-1,i}$ for $i = 1, 2, \dots, n$

Claim: the network models the ship loading problem.

- suppose that $t_{12}, t_{13}, ..., t_{1n}, t_{23}, ..., t_{n-1,n}$ are cargo numbers, where t_{ij} $(\leq b_{ij})$ is the amount of cargo the ship will transport from port *i* to port *j* and that the ship is never loaded above capacity.
- total income is

 $I = \sum_{1 \le i < j \le n} t_{ij} f_{ij}$

- Let x be the flow in N defined as follows:
 - flow on an arc of the form v_{ij} v_i is t_{ij}
 - flow on an arc of the form $v_{ij}v_j$ is $|b_{ij}| t_{ij}$
 - flow on an arc of the form $v_i v_{i+1}$, i = 1, 2, ..., n-1, is the sum of those t_{ab} for which $a \le i$ and $b \ge i+1$.
- since t_{ij}, 1 ≤ i < j ≤ n, are legal cargo numbers then x is feasible with respect to the balance vector and the capacity restriction.
- the cost of x is -1.

- Conversely, suppose that x is a feasible flow in N of cost J.
- we construct a feasible cargo assignment s_{ij} , $1 \le i < j \le n$ as follows:
 - let s_{ij} be the value of x on the arc $v_{ij}v_i$.
- income -J

Outline

Network Flows Duality

1. (Minimum Cost) Network Flows

2. Duality in Network Flow Problems

Maximum (s, t)-Flow

Adding a backward arc from t to s:

$z = \max x_{ts}$ $\sum_{j:ji \in A} x_{ji} - \sum_{j:ij \in A} x_{ij} = 0 \qquad \forall i \in V \qquad (\pi_i)$ $x_{ij} \leq u_{ij} \qquad \forall ij \in A \qquad (w_{ij})$ $x_{ij} \geq 0 \qquad \forall ij \in A$

Dual problem:

$$g^{LP} = \min \sum_{ij \in A} u_{ij} w_{ij}$$
$$\pi_i - \pi_j + w_{ij} \ge 0 \qquad \qquad \forall ij \in A$$
$$\pi_t - \pi_s \ge 1$$
$$w_{ij} \ge 0 \qquad \qquad \forall ij \in A$$

$g^{LP} = \min \sum_{ij \in A} u_{ij} w_{ij}$		(1)
$\pi_i - \pi_j + w_{ij} \ge 0$	$\forall ij \in A$	(2)
$\pi_t - \pi_s \ge 1$		(3)
$w_{ij} \geq 0$	$\forall ij \in A$	(4)

- Without (3) all potentials would go to 0.
- Keep w low because of objective function
- Keep all potentials low \rightsquigarrow (3) $\pi_s = 0, \pi_t = 1$
- Cut C: on left =1 on right =0. Where is the transition?
- Vars w identify the cut $\rightsquigarrow \pi_j \pi_i + w_{ij} \ge 0 \rightsquigarrow w_{ij} = 1$

$$w_{ij} = egin{cases} 1 & \textit{if } ij \in C \ 0 & \textit{otherwise} \end{cases}$$

for those arcs that minimize the cut capacity $\sum_{ij \in A} u_{ij} w_{ij}$

• Complementary slackness: $w_{ij} = 1 \implies x_{ij} = u_{ij}$

Theorem

A strong dual to the max (st)-flow is the minimum (st)-cut problem:

$$\min_{X} \left\{ \sum_{ij \in A: i \in X, j \notin X} u_{ij} : s \in X \subset V \setminus \{t\} \right\}$$

Optimality Condition

- Ford Fulkerson augmenting path algorithm $O(m|x^*|)$
- Edmonds-Karp algorithm (augment by shortest path) in $O(nm^2)$
- Dinic algorithm in layered networks $O(n^2m)$
- Karzanov's push relabel $O(n^2m)$

Min Cost Flow - Dual LP

$$\min \sum_{ij \in A} c_{ij} x_{ij}$$

$$\sum_{j:ji \in A} x_{ji} - \sum_{j:ij \in A} x_{ij} = b_i \qquad \forall i \in V \qquad (\pi_i)$$

$$x_{ij} \leq u_{ij} \qquad \forall ij \in A \qquad (w_{ij})$$

$$x_{ij} \geq 0 \qquad \forall ij \in A$$

Dual problem:

$$\max \sum_{i \in V} b_i \pi_i - \sum_{ij \in E} u_{ij} w_{ij}$$
(1)
$$-c_{ij} - \pi_i + \pi_j \le w_{ij} \qquad \forall ij \in E \qquad (2)$$

$$w_{ij} \ge 0 \qquad \forall ij \in A \qquad (3)$$

- define reduced costs $\bar{c}_{ij} = c_{ij} + \pi_j \pi_i$, hence (2) becomes $-\bar{c}_{ij} \leq w_{ij}$
- $u_e = \infty$ then $w_e = 0$ (from obj. func) and $\bar{c}_{ij} \ge 0$ (optimality condition)
- *u_e* < ∞ then *w_e* ≥ 0 and *w_e* ≥ −*c
 ̄_{ij}* then *w_e* = max{0, −*c
 ̄_{ij}*}, hence *w_e* is determined by others and irrelevant
- Complementary slackness th. for optimal solutions: each primal variable \cdot the corresponding dual slack must be equal 0, ie, $x_e(\bar{c}_e + w_e) = 0$;
 - $x_e > 0$ then $-\bar{c}_e = w_e = \max\{0, \bar{c}_e\},\$

 $x_e > 0 \implies -\bar{c}_e \ge 0$ or equivalently (by negation) $\bar{c}_e > 0 \implies x_e = 0$ each dual variable \cdot the corresponding primal slack must be equal 0, ie, $w_e(x_e - u_e) = 0$)

• $w_e > 0$ then $x_e = u_e$

 $-\bar{c} > 0 \implies x_e = u_e$ or equivalently $\bar{c} < 0 \implies x_e = u_e$

Hence:

 $ar{c}_e > 0$ then $x_e = 0$ $ar{c}_e < 0$ then $x_e = u_e
eq \infty$

Theorem (Optimality conditions)

Let **x** be feasible flow in $N(V, A, \mathbf{l}, \mathbf{u}, \mathbf{b})$ then **x** is min cost flow in N iff $N(\mathbf{x})$ contains no directed cycle of negative cost.

- Cycle canceling algorithm with Bellman Ford Moore for negative cycles $O(nm^2UC)$, $U = \max |u_e|$, $C = \max |c_e|$
- Build up algorithms $O(n^2 m M)$, $M = \max |b(v)|$

Matching: $M \subseteq E$ of pairwise non adjacent edges

bipartite graphs

• cardinality (max or perfect)

• arbitrary graphs

• weighted

Assignment problem \equiv min weighted perfect bipartite matching \equiv special case of min cost flow

bipartite cardinality

Theorem

The cardinality of a max matching in a bipartite graph equals the value of a maximum (s, t)-flow in N_{st} .

 \rightsquigarrow Dinic $O(\sqrt{nm})$

Theorem (Optimality condition (Berge))

A matching M in a graph G is a maximum matching iff G contains no M-augmenting path.

```
\rightsquigarrow augmenting path O(\min(|U|, |V|), m)
```

bipartite weighted

build up algorithm $O(n^3)$ bipartite weighted: Hungarian method $O(n^3)$

minimum weight perfect matching Edmonds $O(n^3)$

Theorem (Hall's (marriage) theorem)

A bipartite graph B = (X, Y, E) has a matching covering X iff:

 $|N(U)| \ge |U| \quad \forall U \subseteq X$

Theorem (König, Egeavary theorem)

Let B = (X, Y, E) be a bipartite graph. Let M^* be the maximum matching and V^* the minimum vertex cover:

 $|M^*| = |V^*|$

Network Flows Duality

1. (Minimum Cost) Network Flows

2. Duality in Network Flow Problems