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Network Flows
DualityTerminology

Network: • directed graph D = (V ,A)
• arc, directed link, from tail to head
• lower bound lij > 0, ∀ij ∈ A, capacity uij ≥ lij , ∀ij ∈ A
• cost cij , linear variation (if ij 6∈ A then lij = uij = 0, cij = 0)
• balance vector b(i), b(i) < 0 supply node (source), b(i) > 0
demand node (sink, tank), b(i) = 0 transhipment node
(assumption

∑
i b(i) = 0)

N = (V ,A, l,u,b, c)
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Network Flows
DualityNetwork Flows

Flow x : A→ R
balance vector of x: bx(v) =

∑
uv∈A

xuv −
∑

vw∈A
xvw , ∀v ∈ V

bx(v)


> 0 sink/target/tank
< 0 source
= 0 balanced

(generalizes the concept of path with bx(v) = {0, 1,−1})

feasible lij ≤ xij ≤ uij , bx(i) = b(i)
cost cTx =

∑
ij∈A cijxij (varies linearly with x)

If iji is a 2-cycle and all lij = 0, then at least one of xij and xji
is zero.
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Network Flows
DualityExample
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Network Flows
DualityMinimum Cost Network Flows

Find cheapest flow through a network in order to satisfy demands at certain
nodes from available supplier nodes.
Variables:

xij ∈ R+
0

Objective:

min
∑
ij∈A

cijxij

Constraints: mass balance + flow bounds∑
j :ij∈A

xij −
∑

j :ji∈A

xji = b(i) ∀i ∈ V

0 ≤ xij ≤ uij

min cTx
Nx = b
0 ≤ x ≤ u

N node arc incidence
matrix

(assumption: all values are integer, we can multiply if rational)

7



Network Flows
Duality

xe1 xe2 . . . xij . . . xem
ce1 ce2 . . . cij . . . cem

1 −1 . . . . . . . . . = b1

2 . . . . . . . . . . = b2
...

...
. . . =

...
i 1 . . . . −1 . . . . = bi
...

...
. . . =

...
j . . . . . 1 . . . . = bj
...

...
. . . =

...
n . . . . . . . . . . = bj

e1 −1 ≥ −u1

e2 −1 ≥ −u2
...

...
. . . ≥

...
(i , j) −1 ≥ −uij

...
...

. . . ≥
...

em −1 ≥ −um
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Network Flows
DualityReductions/Transformations

Lower bounds

Let N = (V ,A, l,u,b, c) N ′ = (V ,A, l′,u′,b′, c)
b′(i) = b(i) + lij
b′(j) = b(j)− lij
u′ij = uij − lij
l ′ij = 0

i

b(i)

j

b(j)lij > 0

i

b(i) + lij

j

b(j)− lijlij = 0

uij − lij

cTx cTx′ +
∑
ij∈A

cij lij
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Network Flows
Duality

Undirected arcs

i j i j
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Network Flows
Duality

Vertex splitting
If there are bounds and costs of flow passing thorugh vertices where b(v) = 0
(used to ensure that a node is visited):
N = (V ,A, l,u, c, l∗,u∗, c∗)

From D to DST as follows:

∀v ∈ V  vs , vt ∈ V (DST ) and vtvs ∈ A(DST )
∀xy ∈ A(D) xsyt ∈ A(DST )
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Network Flows
Duality

∀v ∈ V and vtvs ∈ AST  h′(vt , vs) = h∗(v), h∗ ∈ {l∗, u∗, c∗}
∀xy ∈ A and xsyt ∈ AST  h′(xsyt) = h(x , y), h ∈ {l , u, c}

If b(v) = 0, then b′(vs) = b′(vt) = 0
If b(v) < 0, then b′(vt) = 0 and b′(vs) = b(v)
If b(v) > 0, then b′(vt) = b(v) and b′(vs) = 0
(Note this slide is made with the different convenition that sources have positive
balance. What should change to make it compliant with our convention of negative
balance?) 12



Network Flows
Duality(s, t)-flow:

bx(v) =


−k if v = s
k if v = t
0 otherwise

, |x| = |bx(s)|

e 8

d 3

c−6

b−3

0//21//2

6//6

5//5

c e

b d

sb(s) t b(t)1//2

0//b(e)

0//b(d)0//− b(b)

0//− b(c)

b(s) =
∑

v :b(v)<0 b(v) = −M
b(t) =

∑
v :b(v)>0 b(v) = M

∃ feasible flow in N ⇐⇒ ∃ (s, t)-flow in Nst with |x | = M
⇐⇒ max flow in Nst is M
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Network Flows
DualityResidual Network

Residual Network N(x): given that a flow x already exists, how flow excess
can be moved in G?
Replace arc ij ∈ N with arcs:

residual capacity cost
ij : rij = uij − xij cij
ji : rji = xij −cij

(N, c,u, x) (N(x), c′)
14



Network Flows
DualitySpecial cases

Shortest path problem path of minimum cost from s to t with costs Q 0
b(s) = −1, b(t) = 1, b(i) = 0
if to any other node? b(s) = −(n − 1), b(i) = 1, uij = n − 1

Max flow problem incur no cost but restricted by bounds
steady state flow from s to t
b(i) = 0 ∀i ∈ V , cij = 0 ∀ij ∈ A ts ∈ A
cts = −1, uts =∞

Assignment problem min weighted bipartite matching,
|V1| = |V2|,A ⊆ V1 × V2
cij
b(i) = −1 ∀i ∈ V1 b(i) = 1 ∀i ∈ V2 uij = 1 ∀ij ∈ A
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Network Flows
DualitySpecial cases

Transportation problem/Transhipment distribution of goods,
warehouses-costumers
|V1| 6= |V2|, uij =∞ for all ij ∈ A

min
∑

cijxij∑
i

xij ≥ bj ∀j∑
j

xij ≤ ai ∀i

xij ≥ 0
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Network Flows
Duality

Multi-commodity flow problem ship several commodities using the same
network, different origin destination pairs separate mass
balance constraints, share capacity constraints, min overall
flow

min
∑

k c
kxk

Nxk ≥ bk ∀k∑
k x

k
ij ≤ uij ∀ij ∈ A
0 ≤ xk

ij ≤ uk
ij

What is the structure of the matrix now? Is the matrix still
TUM?
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Network Flows
DualityApplication Example

Ship loading problem

Plenty of applications. See Ahuja Magnanti Orlin,
Network Flows, 1993

• A cargo company (eg, Maersk) uses a ship with a capacity to carry at
most r units of cargo.

• The ship sails on a long route (say from Southampton to Alexandria)
with several stops at ports in between.

• At these ports cargo may be unloaded and new cargo loaded.

• At each port there is an amount bij of cargo which is waiting to be
shipped from port i to port j > i

• Let fij denote the income for the company from transporting one unit of
cargo from port i to port j .

• The goal is to plan how much cargo to load at each port so as to
maximize the total income while never exceeding ship’s capacity.
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Network Flows
DualityApplication Example: Modeling

• n number of stops including the starting port and the terminal port.

• N = (V ,A, l ≡ 0,u, c) be the network defined as follows:

• V = {v1, v2, ..., vn} ∪ {vij : 1 ≤ i < j ≤ n}

• A = {v1v2, v2v3, ...vn−1vn} ∪ {vijvi , vijvj : 1 ≤ i < j ≤ n}

• capacity: uvi vi+1 = r for i = 1, 2, ..., n− 1 and all other arcs have capacity
∞.

• cost: cvij vi = −fij for 1 ≤ i < j ≤ n and all other arcs have cost zero
(including those of the form vijvj )

• balance vector: b(vij ) = −bij for 1 ≤ i < j ≤ n and the balance vector of
vi = b1i + b2i + ...+ bi−1,i for i = 1, 2, ..., n
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Network Flows
DualityApplication Example: Modeling
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Network Flows
DualityApplication Example: Modeling

Claim: the network models the ship loading problem.

• suppose that t12, t13, ..., t1n, t23, ..., tn−1,n are cargo numbers, where tij
(≤ bij) is the amount of cargo the ship will transport from port i to port
j and that the ship is never loaded above capacity.

• total income is

I =
∑

1≤i<j≤n

tij fij

• Let x be the flow in N defined as follows:
• flow on an arc of the form vijvi is tij
• flow on an arc of the form vijvj is |bij | − tij
• flow on an arc of the form vivi+1, i = 1, 2, ..., n − 1, is the sum of those

tab for which a ≤ i and b ≥ i + 1.

• since tij , 1 ≤ i < j ≤ n, are legal cargo numbers then x is feasible with
respect to the balance vector and the capacity restriction.

• the cost of x is −I .
21



Network Flows
DualityApplication Example: Modeling

• Conversely, suppose that x is a feasible flow in N of cost J.

• we construct a feasible cargo assignment sij , 1 ≤ i < j ≤ n as follows:

• let sij be the value of x on the arc vijvi .

• income −J
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DualityOutline
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Network Flows
DualityMaximum (s, t)-Flow

Adding a backward arc from t to s:

z = max xts∑
j :ji∈A

xji −
∑
j :ij∈A

xij = 0 ∀i ∈ V (πi )

xij ≤ uij ∀ij ∈ A (wij )

xij ≥ 0 ∀ij ∈ A

Dual problem:

gLP = min
∑
ij∈A

uijwij

πi − πj + wij ≥ 0 ∀ij ∈ A

πt − πs ≥ 1

wij ≥ 0 ∀ij ∈ A
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Network Flows
Duality

xe1 xe2 . . . xij . . . xem
ce1 ce2 . . . cij . . . cem

1 −1 . . . . . . . . . = b1

2 . . . . . . . . . . = b2
...

...
. . . =

...
i 1 . . . . −1 . . . . = bi
...

...
. . . =

...
j . . . . . 1 . . . . = bj
...

...
. . . =

...
n . . . . . . . . . . = bj

e1 −1 ≥ −u1

e2 −1 ≥ −u2
...

...
. . . ≥

...
(i , j) −1 ≥ −uij

...
...

. . . ≥
...

em −1 ≥ −um
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gLP = min
∑
ij∈A

uijwij (1)

πi − πj + wij ≥ 0 ∀ij ∈ A (2)
πt − πs ≥ 1 (3)

wij ≥ 0 ∀ij ∈ A (4)

• Without (3) all potentials would go to 0.

• Keep w low because of objective function

• Keep all potentials low  (3) πs = 0, πt = 1

• Cut C : on left =1 on right =0. Where is the transition?

• Vars w identify the cut  πj − πi + wij ≥ 0  wij = 1

wij =

{
1 if ij ∈ C
0 otherwise

for those arcs that minimize the cut capacity
∑

ij∈A uijwij

• Complementary slackness: wij = 1 =⇒ xij = uij



Network Flows
Duality

Theorem

A strong dual to the max (st)-flow is the minimum (st)-cut problem:

min
X

 ∑
ij∈A:i∈X ,j 6∈X

uij : s ∈ X ⊂ V \ {t}


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Network Flows
DualityMax Flow Algorithms

Optimality Condition

• Ford Fulkerson augmenting path algorithm O(m|x∗|)

• Edmonds-Karp algorithm (augment by shortest path) in O(nm2)

• Dinic algorithm in layered networks O(n2m)

• Karzanov’s push relabel O(n2m)
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Network Flows
DualityMin Cost Flow - Dual LP

min
∑
ij∈A

cijxij∑
j :ji∈A

xji −
∑
j :ij∈A

xij = bi ∀i ∈ V (πi )

xij ≤ uij ∀ij ∈ A (wij )

xij ≥ 0 ∀ij ∈ A

Dual problem:

max
∑
i∈V

biπi −
∑
ij∈E

uijwij (1)

−cij − πi + πj ≤ wij ∀ij ∈ E (2)

wij ≥ 0 ∀ij ∈ A (3)
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Network Flows
Duality

• define reduced costs c̄ij = cij + πj − πi , hence (2) becomes −c̄ij ≤ wij

• ue =∞ then we = 0 (from obj. func) and c̄ij ≥ 0 (optimality condition)

• ue <∞ then we ≥ 0 and we ≥ −c̄ij then we = max{0,−c̄ij}, hence we
is determined by others and irrelevant

• Complementary slackness th. for optimal solutions:
each primal variable · the corresponding dual slack must be equal 0, ie,
xe(c̄e + we) = 0;

• xe > 0 then −c̄e = we = max{0, c̄e},
xe > 0 =⇒ −c̄e ≥ 0 or equivalently (by negation) c̄e > 0 =⇒ xe = 0

each dual variable · the corresponding primal slack must be equal 0, ie,
we(xe − ue) = 0)

• we > 0 then xe = ue

−c̄ > 0 =⇒ xe = ue or equivalently c̄ < 0 =⇒ xe = ue

Hence:
c̄e > 0 then xe = 0
c̄e < 0 then xe = ue 6=∞
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Network Flows
DualityMin Cost Flow Algorithms

Theorem (Optimality conditions)

Let x be feasible flow in N(V ,A, l,u,b) then x is min cost flow in N iff N(x)
contains no directed cycle of negative cost.

• Cycle canceling algorithm with Bellman Ford Moore for negative cycles
O(nm2UC ), U = max |ue |, C = max |ce |

• Build up algorithms O(n2mM), M = max |b(v)|
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Network Flows
DualityMatching Algorithms

Matching: M ⊆ E of pairwise non adjacent edges

• bipartite graphs

• arbitrary graphs

• cardinality (max or perfect)

• weighted

Assignment problem ≡ min weighted perfect bipartite matching ≡ special
case of min cost flow
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Network Flows
Duality

bipartite cardinality

Theorem
The cardinality of a max matching in a bipartite graph equals the value of a
maximum (s, t)-flow in Nst .

 Dinic O(
√
nm)

Theorem (Optimality condition (Berge))

A matching M in a graph G is a maximum matching iff G contains no
M-augmenting path.

 augmenting path O(min(|U|, |V |),m)

bipartite weighted
build up algorithm O(n3)
bipartite weighted: Hungarian method O(n3)

minimum weight perfect matching
Edmonds O(n3)
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Network Flows
Duality

Theorem (Hall’s (marriage) theorem)

A bipartite graph B = (X ,Y ,E ) has a matching covering X iff:

|N(U)| ≥ |U| ∀U ⊆ X

Theorem (König, Egeavary theorem)

Let B = (X ,Y ,E ) be a bipartite graph. Let M∗ be the maximum matching
and V ∗ the minimum vertex cover:

|M∗| = |V ∗|
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1. (Minimum Cost) Network Flows
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