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Introduction
Solving LP Problems
PreliminariesThe Diet Problem (Blending Problems)

• Select a set of foods that will satisfy a set of daily
nutritional requirement at minimum cost.

• Motivated in the 1930s and 1940s by US army.

• Formulated as a linear programming problem by
George Stigler

• First linear programming problem

• (programming intended as planning not computer code)

min cost/weight
subject to nutrition requirements:

eat enough but not too much of Vitamin A
eat enough but not too much of Sodium
eat enough but not too much of Calories
...
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Introduction
Solving LP Problems
PreliminariesThe Diet Problem

Suppose there are:
• 3 foods available, corn, milk, and bread, and

• there are restrictions on the number of calories (between 2000 and 2250)
and the amount of Vitamin A (between 5,000 and 50,000)

Food Cost per serving Vitamin A Calories
Corn $0.18 107 72

2% Milk $0.23 500 121
Wheat Bread $0.05 0 65
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Introduction
Solving LP Problems
PreliminariesThe Mathematical Model

Parameters (given data)
F = set of foods
N = set of nutrients

aij = amount of nutrient j in food i , ∀i ∈ F , ∀j ∈ N
ci = cost per serving of food i ,∀i ∈ F

Fmini = minimum number of required servings of food i ,∀i ∈ F
Fmaxi = maximum allowable number of servings of food i ,∀i ∈ F
Nminj = minimum required level of nutrient j ,∀j ∈ N
Nmaxj = maximum allowable level of nutrient j ,∀j ∈ N

Decision Variables
xi = number of servings of food i to purchase/consume, ∀i ∈ F
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Introduction
Solving LP Problems
PreliminariesThe Mathematical Model

Objective Function: Minimize the total cost of the food

Minimize
∑
i∈F

cixi

Constraint Set 1: For each nutrient j ∈ N, at least meet the minimum required level∑
i∈F

aijxi ≥ Nminj , ∀j ∈ N

Constraint Set 2: For each nutrient j ∈ N, do not exceed the maximum allowable
level.∑

i∈F

aijxi ≤ Nmaxj , ∀j ∈ N

Constraint Set 3: For each food i ∈ F , select at least the minimum required number
of servings

xi ≥ Fmini ,∀i ∈ F

Constraint Set 4: For each food i ∈ F , do not exceed the maximum allowable
number of servings.

xi ≤ Fmaxi , ∀i ∈ F
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Introduction
Solving LP Problems
PreliminariesThe Mathematical Model

system of equalities and inequalities

min
∑
i∈F

cixi∑
i∈F

aijxi ≥ Nminj , ∀j ∈ N∑
i∈F

aijxi ≤ Nmaxj , ∀j ∈ N

xi ≥ Fmini , ∀i ∈ F
xi ≤ Fmaxi , ∀i ∈ F
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Introduction
Solving LP Problems
PreliminariesMathematical Model

Machines/Materials A and B
Products 1 and 2

max 6x1 + 8x2
5x1 + 10x2 ≤ 60
4x1 + 4x2 ≤ 40

x1 ≥ 0
x2 ≥ 0

Graphical Representation:

5x1 + 10x2 ≤ 60

4x1 + 4x2 ≤ 406x1 + 8x2 = 16

x1

x2
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Introduction
Solving LP Problems
PreliminariesIn Matrix Form

max c1x1 + c2x2 + c3x3 + . . . + cnxn = z
s.t. a11x1 + a12x2 + a13x3 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + a23x3 + . . . + a2nxn ≤ b2
. . .

am1x1 + am2x2 + am3x3 + . . . + amnxn ≤ bm
x1, x2, . . . , xn ≥ 0

c =


c1
c2
...
cn

 , A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
a31 a32 . . . amn

 , x =


x1
x2
...
xn

 , b =


b1
b2
...

bm



max z = cTx
Ax ≤ b
x ≥ 0
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Introduction
Solving LP Problems
PreliminariesLinear Programming

Abstract mathematical model:
Parameters, Decision Variables, Objective, Constraints

The Syntax of a Linear Programming Problem

objective func. max /min cT · x c ∈ Rn

constraints s.t. A · x R b A ∈ Rm×n,b ∈ Rm

x ≥ 0 x ∈ Rn, 0 ∈ Rn

Essential features: continuity, linearity (proportionality and additivity),
certainty of parameters

• Any vector x ∈ Rn satisfying all constraints is a feasible solution.

• Each x∗ ∈ Rn that gives the best possible value for cTx among all
feasible x is an optimal solution or optimum

• The value cTx∗ is the optimum value
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Introduction
Solving LP Problems
Preliminaries

• The linear programming model consisted of 9 equations in 77 variables

• Stigler, guessed an optimal solution using a heuristic method

• In 1947, the National Bureau of Standards used the newly developed
simplex method to solve Stigler’s model.
It took 9 clerks using hand-operated desk calculators 120 man days to
solve for the optimal solution

• The original instance:
http://www.gams.com/modlib/libhtml/diet.htm

13

http://www.gams.com/modlib/libhtml/diet.htm


Introduction
Solving LP Problems
PreliminariesAMPL Model

� �
# diet.mod
set NUTR;
set FOOD;

param cost {FOOD} > 0;
param f_min {FOOD} >= 0;
param f_max { i in FOOD} >= f_min[i];
param n_min { NUTR } >= 0;
param n_max {j in NUTR } >= n_min[j];
param amt {NUTR,FOOD} >= 0;

var Buy { i in FOOD} >= f_min[i], <= f_max[i]

minimize total_cost: sum { i in FOOD } cost [i] ∗ Buy[i];
subject to diet { j in NUTR }:

n_min[j] <= sum {i in FOOD} amt[i,j] ∗ Buy[i] <= n_max[j];� �
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Introduction
Solving LP Problems
PreliminariesAMPL Model

� �
# diet.dat
data;

set NUTR := A B1 B2 C ;
set FOOD := BEEF CHK FISH HAM MCH

MTL SPG TUR;

param: cost f_min f_max :=
BEEF 3.19 0 100
CHK 2.59 0 100
FISH 2.29 0 100
HAM 2.89 0 100
MCH 1.89 0 100
MTL 1.99 0 100
SPG 1.99 0 100
TUR 2.49 0 100 ;

param: n_min n_max :=
A 700 10000
C 700 10000
B1 700 10000
B2 700 10000 ;

# %� �

� �
param amt (tr):

A C B1 B2 :=
BEEF 60 20 10 15
CHK 8 0 20 20
FISH 8 10 15 10
HAM 40 40 35 10
MCH 15 35 15 15
MTL 70 30 15 15
SPG 25 50 25 15
TUR 60 20 15 10 ;� �
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Introduction
Solving LP Problems
PreliminariesPython Script

Data� �
from gurobipy import ∗

categories, minNutrition, maxNutrition =
multidict({

’calories’: [1800, 2200],
’protein’: [91, GRB.INFINITY],
’fat’: [0, 65],
’sodium’: [0, 1779] })

foods, cost = multidict({
’hamburger’: 2.49,
’chicken’: 2.89,
’hot dog’: 1.50,
’fries’: 1.89,
’macaroni’: 2.09,
’pizza’: 1.99,
’salad’: 2.49,
’milk’: 0.89,
’ice cream’: 1.59 })� �

� �
# Nutrition values for the foods
nutritionValues = {

(’hamburger’, ’calories’): 410,
(’hamburger’, ’protein’): 24,
(’hamburger’, ’fat’): 26,
(’hamburger’, ’sodium’): 730,
(’chicken’, ’calories’): 420,
(’chicken’, ’protein’): 32,
(’chicken’, ’fat’): 10,
(’chicken’, ’sodium’): 1190,
(’hot dog’, ’calories’): 560,
(’hot dog’, ’protein’): 20,
(’hot dog’, ’fat’): 32,
(’hot dog’, ’sodium’): 1800,
(’fries’, ’calories’): 380,
(’fries’, ’protein’): 4,
(’fries’, ’fat’): 19,
(’fries’, ’sodium’): 270,
(’macaroni’, ’calories’): 320,
(’macaroni’, ’protein’): 12,
(’macaroni’, ’fat’): 10,
(’macaroni’, ’sodium’): 930,
(’pizza’, ’calories’): 320,
(’pizza’, ’protein’): 15,
(’pizza’, ’fat’): 12,
(’pizza’, ’sodium’): 820,
(’salad’, ’calories’): 320,
(’salad’, ’protein’): 31,
(’salad’, ’fat’): 12,
(’salad’, ’sodium’): 1230,
(’milk’, ’calories’): 100,
(’milk’, ’protein’): 8,
(’milk’, ’fat’): 2.5,
(’milk’, ’sodium’): 125,
(’ice cream’, ’calories’): 330,
(’ice cream’, ’protein’): 8,
(’ice cream’, ’fat’): 10,
(’ice cream’, ’sodium’): 180 }� �

16



Introduction
Solving LP Problems
Preliminaries� �

# Model diet.py
m = Model("diet")

# Create decision variables for the foods to buy
buy = {}
for f in foods:

buy[f] = m.addVar(obj=cost[f], name=f)

# The objective is to minimize the costs
m.modelSense = GRB.MINIMIZE

# Update model to integrate new variables
m.update()

# Nutrition constraints
for c in categories:

m.addConstr(
quicksum(nutritionValues[f,c] ∗ buy[f] for f in foods) <= maxNutrition[c], name=c+’max’)

m.addConstr(
quicksum(nutritionValues[f,c] ∗ buy[f] for f in foods) >= minNutrition[c], name=c+’min’)

# Solve
m.optimize()� �
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Introduction
Solving LP Problems
PreliminariesHistory of Linear Programming (LP)

System of linear equations

 It is impossible to find out who knew what when first.
Just two "references":

• Egyptians and Babylonians considered about 2000 B.C. the solution of
special linear equations. But, of course, they described examples and did
not describe the methods in "today’s style".

• What we call "Gaussian elimination"today has been explicitly described
in Chinese "Nine Books of Arithmetic"which is a compendium written in
the period 2010 B.C. to A.D. 9, but the methods were probably known
long before that.

• Gauss, by the way, never described "Gaussian elimination". He just used
it and stated that the linear equations he used can be solved "per
eliminationem vulgarem"
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Introduction
Solving LP Problems
PreliminariesHistory of Linear Programming (LP)

• Origins date back to Newton, Leibnitz, Lagrange, etc.

• In 1827, Fourier described a variable elimination method for systems of
linear inequalities, today often called Fourier-Moutzkin elimination
(Motzkin, 1937). It can be turned into an LP solver but inefficient.

• In 1932, Leontief (1905-1999) Input-Output model to represent
interdependencies between branches of a national economy (1976 Nobel
prize)

• In 1939, Kantorovich (1912-1986): Foundations of linear programming
(Nobel prize in economics with Koopmans on LP, 1975) on Optimal use
of scarce resources: foundation and economic interpretation of LP

• The math subfield of Linear Programming was created by George
Dantzig, John von Neumann (Princeton), and Leonid Kantorovich in the
1940s.

• In 1947, Dantzig (1914-2005) invented the (primal) simplex algorithm
working for the US Air Force at the Pentagon. (program=plan)
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Introduction
Solving LP Problems
PreliminariesHistory of LP (cntd)

• In 1954, Lemke: dual simplex algorithm, In 1954, Dantzig and Orchard
Hays: revised simplex algorithm

• In 1970, Victor Klee and George Minty created an example that showed
that the classical simplex algorithm has exponential worst-case behavior.

• In 1979, L. Khachain found a new efficient algorithm for linear
programming. It was terribly slow. (Ellipsoid method)

• In 1984, Karmarkar discovered yet another new efficient algorithm for
linear programming. It proved to be a strong competitor for the simplex
method. (Interior point method)

20



Introduction
Solving LP Problems
PreliminariesHistory of Optimization

• In 1951, Nonlinear Programming began with the Karush-Kuhn-Tucker
Conditions

• In 1952, Commercial Applications and Software began

• In 1950s, Network Flow Theory began with the work of Ford and
Fulkerson.

• In 1955, Stochastic Programming began

• In 1958, Integer Programming began by R. E. Gomory.

• In 1962, Complementary Pivot Theory
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Introduction
Solving LP Problems
PreliminariesFourier Motzkin elimination method

Has Ax ≤ b a solution? (Assumption: A ∈ Qm×n,b ∈ Qn)
Idea:

1. transform the system into another by eliminating some variables such
that the two systems have the same solutions over the remaining
variables.

2. reduce to a system of constant inequalities that can be easily decided

Let xr be the variable to eliminate
Let M = {1 . . .m} index the constraints
For a variable j let partition the rows of the matrix in

N = {i ∈ M | aij < 0}
Z = {i ∈ M | aij = 0}
P = {i ∈ M | aij > 0}
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Solving LP Problems
Preliminaries

 xr ≥ b′ir −
∑r−1

k=1 a′ikxk , air < 0
xr ≤ b′ir −

∑r−1
k=1 a′ikxk , air > 0

all other constraints i ∈ Z

 xr ≥ Ai (x1, . . . , xr−1), i ∈ N
xr ≤ Bi (x1, . . . , xr−1), i ∈ P
all other constraints i ∈ Z

Hence the original system is equivalent to{
max{Ai (x1, . . . , xr−1), i ∈ N} ≤ xr ≤ min{Bi (x1, . . . , xr−1), i ∈ P}
all other constraints i ∈ Z

which is equivalent to{
Ai (x1, . . . , xr−1) ≤ Bj(x1, . . . , xr−1) i ∈ N, j ∈ P
all other constraints i ∈ Z

we eliminated xr but:{
|N| · |P| inequalities
|Z | inequalities

after d iterations if |P| = |N| = n/2 exponential growth: 1/4(n/2)2
d
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Introduction
Solving LP Problems
PreliminariesExample

−7x1 + 6x2 ≤ 25
x1 − 5x2 ≤ 1
x1 ≤ 7
−x1 + 2x2 ≤ 12
−x1 − 3x2 ≤ 1
2x1 − x2 ≤ 10

x2 variable to eliminate
N = {2, 5, 6},Z = {3},P = {1, 4}
|Z ∪ (N × P)| = 7 constraints

By adding one variable and one inequality, Fourier-Motzkin elimination can
be turned into an LP solver.

25



Introduction
Solving LP Problems
PreliminariesOutline

1. Introduction
Diet Problem

2. Solving LP Problems
Fourier-Motzkin method

3. Preliminaries
Fundamental Theorem of LP
Gaussian Elimination

26



Introduction
Solving LP Problems
PreliminariesDefinitions

• R: set of real numbers
N = {1, 2, 3, 4, ...}: set of natural numbers (positive integers)
Z = {...,−3,−2,−1, 0, 1, 2, 3, ...}: set of all integers
Q = {p/q | p, q ∈ Z, q 6= 0}: set of rational numbers

• column vector and matrices
scalar product: yTx =

∑n
i=1 yixi

• linear combination

v1, v2 . . . , vk ∈ Rn

λλλ = [λ1, . . . , λk ]
T ∈ Rk x = λ1v1 + · · ·+ λkvk =

k∑
i=1

λivi

moreover:

λλλ ≥ 0 conic combination
λλλT1 = 1 affine combination

λλλ ≥ 0 and λλλT1 = 1 convex combination

(
k∑

i=1

λi = 1

)
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Introduction
Solving LP Problems
PreliminariesDefinitions

• set S is linear (affine) independent if no element of it can be expressed
as linear combination of the others
Eg: S ⊆ Rn =⇒ max n lin. indep. (n + 1 lin. aff. indep.)

• convex set: if x, y ∈ S and 0 ≤ λ ≤ 1 then λx + (1− λ)y ∈ S

• convex function if its epigraph {(x , y) ∈ R2 : y ≥ f (x)} is a convex set
or f : X → R, if ∀x , y ∈ X , λ ∈ [0, 1] it holds that
f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)
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Introduction
Solving LP Problems
PreliminariesDefinitions

• For a set of points S ⊆ Rn

lin(S) linear hull (span)
cone(S) conic hull
aff(S) affine hull

conv(S) convex hull

conv(X ) = {λ1x1 + λ2x2 + . . .+ λnxn | xi ∈ X , λ1, . . . , λn ≥ 0 and
∑

i λi = 1}
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Solving LP Problems
PreliminariesDefinitions

• rank of a matrix for columns (= for rows)
if (m, n)-matrix has rank = min{m, n} then the matrix is full rank
if (n, n)-matrix is full rank then it is regular and admits an inverse

• G ⊆ Rn is an hyperplane if ∃ a ∈ Rn \ {0} and α ∈ R:

G = {x ∈ Rn | aTx = α}

• H ⊆ Rn is an halfspace if ∃ a ∈ Rn \ {0} and α ∈ R:

H = {x ∈ Rn | aTx ≤ α}

(aTx = α is a supporting hyperplane of H)
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PreliminariesDefinitions

• a set S ⊂ Rn is a polyhedron if ∃m ∈ Z+,A ∈ Rm×n,b ∈ Rm:

P = {x ∈ R | Ax ≤ b} =
m⋂

i=1

{x ∈ Rn | Ai·x ≤ bi}

• a polyhedron P is a polytope if it is bounded: ∃ B ∈ R,B > 0:

P ⊆ {x ∈ Rn | ‖x‖ ≤ B}

• Theorem: every polyhedron P 6= Rn is determined by finitely many
halfspaces
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Introduction
Solving LP Problems
PreliminariesDefinitions

• General optimization problem:
max{ϕ(x) | x ∈ F}, F is feasible region for x

• Note: if F is open, eg, x < 5 then: sup{x | x < 5}
sumpreum: least element of R greater or equal than any element in F

• If A and b are made of rational numbers, P = {x ∈ Rn | Ax ≤ b} is a
rational polyhedron
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PreliminariesDefinitions

• A face of P is F = {x ∈ P | ax = α}. Hence F is either P itself or the
intersection of P with a supporting hyperplane. It is said to be proper if
F 6= ∅ and F 6= P.

• A point x for which {x} is a face is called a vertex of P and also a basic
solution of Ax ≤ b (0 dim face)

• A facet is a maximal face distinct from P
cx ≤ d is facet defining if cx = d is a supporting hyperplane of P
(n − 1 dim face)
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Input: a matrix A ∈ Rm×n and column vectors b ∈ Rm, c ∈ Rn

Task:

1. decide that {x ∈ Rn;Ax ≤ b} is empty (prob. infeasible), or

2. find a column vector x ∈ Rn such that Ax ≤ b and cTx is max, or

3. decide that for all α ∈ R there is an x ∈ Rn with Ax ≤ b and cTx > α
(prob. unbounded)

1. F = ∅
2. F 6= ∅ and ∃ solution

1. one solution
2. infinite solution

3. F 6= ∅ and 6 ∃ solution
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PreliminariesLinear Programming and Linear Algebra

• Linear algebra: linear equations (Gaussian elimination)

• Integer linear algebra: linear diophantine equations

• Linear programming: linear inequalities (simplex method)

• Integer linear programming: linear diophantine inequalities

35



Introduction
Solving LP Problems
PreliminariesOutline

1. Introduction
Diet Problem

2. Solving LP Problems
Fourier-Motzkin method

3. Preliminaries
Fundamental Theorem of LP
Gaussian Elimination

36



Introduction
Solving LP Problems
PreliminariesFundamental Theorem of LP

Theorem (Fundamental Theorem of Linear Programming)

Given:

min{cTx | x ∈ P} where P = {x ∈ Rn | Ax ≤ b}

If P is a bounded polyhedron and not empty and x∗ is an optimal solution to
the problem, then:

• x∗ is an extreme point (vertex) of P, or

• x∗ lies on a face F ⊂ P of optimal solution

Proof idea:

• assume x∗ not a vertex of P then ∃ a ball around it still in P. Show that
a point in the ball has better cost

• if x∗ is not a vertex then it is a convex combination of vertices. Show
that all points are also optimal.
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Implications:

• the optimal solution is at the intersection of hyperplanes supporting
halfspaces.

• hence finitely many possibilities

• Solution method: write all inequalities as equalities and solve all
(n
m

)
systems of linear equalities (n # variables, m # equality constraints)

• for each point we then need to check if feasible and if best in cost.

• each system is solved by Gaussian elimination
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1. find a solution that is at the intersection of some m hyperplanes

2. try systematically to produce the other points by exchanging one
hyperplane with another

3. check optimality, proof provided by duality theory
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Introduction
Solving LP Problems
PreliminariesGaussian Elimination

1. Forward elimination
reduces the system to triangular (row echelon) form by elementary row
operations

• multiply a row by a non-zero constant
• interchange two rows
• add a multiple of one row to anothe

(or LU decomposition)

2. Back substitution (or reduced row echelon form - RREF)
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Example

2x + y − z = 8 (R1)
−3x − y + 2z = −11 (R2)
−2x + y + 2z = −3 (R3)

|----+----+----+----+-----|
| R1 | 2 | 1 | -1 | 8 |
| R2 | -3 | -1 | 2 | -11 |
| R3 | -2 | 1 | 2 | -3 |
|----+----+----+----+-----|

2x + y − z = 8 (R1)
+ 1

2y + 1
2z = 1 (R2)

+ 2y + 1z = 5 (R3)

2x + y − z = 8 (R1)
+ 1

2y + 1
2z = 1 (R2)

− z = 1 (R3)

2x + y − z = 8 (R1)
+ 1

2y + 1
2z = 1 (R2)

− z = 1 (R3)

x = 2 (R1)
y = 3 (R2)

z = −1 (R3)

|---------------+---+-----+------+---|
| R1’=1/2 R1 | 1 | 1/2 | -1/2 | 4 |
| R2’=R2+3/2 R1 | 0 | 1/2 | 1/2 | 1 |
| R3’=R3+R1 | 0 | 2 | 1 | 5 |
|---------------+---+-----+------+---|

|-------------+---+-----+------+---|
| R1’=R1 | 1 | 1/2 | -1/2 | 4 |
| R2’=2 R2 | 0 | 1 | 1 | 2 |
| R3’=R3-4 R2 | 0 | 0 | -1 | 1 |
|-------------+---+-----+------+---|

|---------------+---+-----+---+-----|
| R1’=R1-1/2 R3 | 1 | 1/2 | 0 | 7/2 |
| R2’=R2+R3 | 0 | 1 | 0 | 3 |
| R3’=-R3 | 0 | 0 | 1 | -1 |
|---------------+---+-----+---+-----|

|---------------+---+---+---+----+
| R1’=R1-1/2 R2 | 1 | 0 | 0 | 2 | => x=2
| R2’=R2 | 0 | 1 | 0 | 3 | => y=3
| R3’=R3 | 0 | 0 | 1 | -1 | => z=-1
|---------------+---+---+---+----+
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PreliminariesIn Python

reduced row-echelon form of matrix and indices of pivot vars
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Introduction
Solving LP Problems
PreliminariesLU Factorization 2 1 −1

−3 −1 2
−2 1 2

x
y
z

 =

 8
−11
−3

 Ax = b

x = A−1b

 2 1 −1
−3 −1 2
−2 1 2

 =

 1 0 0
l21 1 0
l31 l32 1

u11 u12 u13
0 u22 u23
0 0 u33

 A = PLU

x = A−1b = U−1L−1PTb

z1 = PTb, z2 = L−1z1, x = U−1z2
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Polynomial time O(n2m) but needs to guarantee that all the numbers during
the run can be represented by polynomially bounded bits
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