DM545 Linear and Integer Programming

#### Lecture 4 Exception Handling and Initialization

#### Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

## Outline

Exception Handling Initialization

1. Exception Handling

2. Initialization

Handling exceptions in the Simplex Method

- 1. Unboundedness
- 2. More than one solution
- 3. Degeneracies
  - benign
  - cycling
- 4. Infeasible starting Phase I + Phase II

a.  $F = \emptyset$ 

- b.  $F \neq \emptyset$  and  $\exists$  solution
  - i) one solution
  - ii) infinite solution
- c.  $F \neq \emptyset$  and  $\not\exists$  solution

## Outline

#### 1. Exception Handling

2. Initialization

# **Exception Handling**

- 1. Unboundedness
- 2. More than one solution
- 3. Degeneracies
  - benign
  - cycling
- 4. Infeasible starting

**1**.  $F = \emptyset$ 

- **2**.  $F \neq \emptyset$  and  $\exists$  solution
  - 1. one solution
  - 2. infinite solution
- **3**.  $F \neq \emptyset$  and  $\not\exists$  solution

### Unboundedness

• Initial tableau

| 1     | Т | x1 | Т | x2 | Т | xЗ | Т | x4 | Т | -z | Т | b | I. |  |
|-------|---|----|---|----|---|----|---|----|---|----|---|---|----|--|
| +     |   |    |   |    |   |    |   |    |   |    |   |   |    |  |
| x3    |   | 0  | T | 1  | T | 1  | Т | 0  | Т | 0  | T | 5 | I. |  |
| x4    |   | -1 | T | 1  | T | 0  | Т | 1  | Т | 0  | T | 1 | I. |  |
| +++++ |   |    |   |    |   |    |   |    |   |    |   |   |    |  |
| 1     | Τ | 2  | T | 1  | Т | 0  | Т | 0  | Т | 1  | T | 0 | Т  |  |

•  $x_1$  entering,  $x_3$  leaving

| x1 | x2 | x3 | x4 | -z | ъI I'=I 1 0 1 -1 0 1 4 II'=II+I' 5 ---+ | III'=III-3I' | 3 2 1 1 -13

 $x_4$  was already in basis but for both I and II ( $x_2 + 0x_4 = 5$ ),  $x_4$  can increase arbitrarily



#### Exception Handling

### $\infty$ solutions

Initial tableau



•  $x_2$  enters,  $x_3$  leaves

| ļ |             |    |     |     |   |     | xЗ   |     |   |    |   |    |    |    |
|---|-------------|----|-----|-----|---|-----|------|-----|---|----|---|----|----|----|
|   |             |    |     |     |   |     |      |     |   |    |   |    |    |    |
| I | I'=I/10     |    | 1/2 | Ι   | 1 | L   | 1/10 | L   | 0 | Ι  | 0 |    | 6  | L  |
| L | II'=II-4Ix4 | Ι  | 2   | Ι   | 0 | Ι   | -2/5 | Ι   | 1 | Ι  | 0 | L  | 16 | L  |
| Ŀ |             | +- |     | .+. |   | .+. |      | .+. |   | +. |   | +- |    | T. |
| İ | III'=III-I  | Т  | 1/2 | T   | 0 | T   | -1/6 | T   | 0 | T  | 1 | L  | -6 | Ĺ  |

•  $x_1$  enters,  $x_4$  leaves

 $\mathbf{x} = (8, 2, 0, 0), z = 10$ nonbasic variables typically have reduced costs  $\neq 0$ . Here  $x_3$  has r.c. = 0. Let's make it enter the basis

•  $x_3$  enters,  $x_2$  leaves

 $\mathbf{x} = (10, 0, 10, 0), z = 10$ 

There are 2 optimal solutions  $\rightsquigarrow$  all their convex combinations are optimal solutions:

$$\mathbf{x} = \sum_{i} \alpha_{i} \mathbf{x}_{i} \qquad \mathbf{x}_{1}^{T} = [8, 2, 0, 0] \\ \mathbf{x}_{2}^{T} = [10, 0, 10, 0] \qquad \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = \alpha \begin{bmatrix} 8 \\ 2 \\ 0 \\ 0 \end{bmatrix} + (1-\alpha) \begin{bmatrix} 10 \\ 0 \\ 10 \\ 0 \end{bmatrix} \\ \sum_{i} \alpha_{i} = 1 \qquad \alpha_{2} = 1 - \alpha$$



$$x_1 = 8\alpha + 10(1 - \alpha)$$
  
 $x_2 = 2\alpha$   
 $x_3 = 10(1 - \alpha)$   
 $x_4 = 0$ 

#### Degeneracy

 $\begin{array}{cccc} \max & x_2 & & \\ & -x_1 \, + \, x_2 \, \leq \, 0 \\ & x_1 & \leq \, 2 \\ & & x_1, x_2 \, \geq \, 0 \end{array}$ 

• Initial tableau

· degenerate pivot step: not improving, the entering variable stays at zero

| 1    | Т   | x1 | I   | x2 | I  | xЗ | I   | x4 | I  | -z | I | b | L     |
|------|-----|----|-----|----|----|----|-----|----|----|----|---|---|-------|
|      | -+- |    | .+. |    | +- |    | .+. |    | +  |    | + |   | ·   - |
| 1    | Т   | -1 | Т   | 1  | Т  | 1  | Τ   | 0  | Т  | 0  | Т | 0 | L     |
| 1    | Т   | 1  | Т   | 0  | Т  | 0  | Τ   | 1  | Т  | 0  | Т | 2 | L     |
| ++++ |     |    |     |    |    |    |     |    |    |    |   |   |       |
| 1    | Т   | 1  | Т   | 0  | T  | -1 | T   | 0  | I. | 1  | T | 0 | I.    |

#### • now nondegenerate:





 $\geq n+1$  constraints meet at a vertex

Def: Improving variable, one with positive reduced cost

Under certain pivoting rules cycling can happen. So far we chose an arbitrary improving variable to enter.

Degenerate conditions may appear often in practice but cycling is rare and some pivoting rules prevent cycling. (Ex. 7 Sheet 3 shows the smallest possible example)

#### Theorem

If the simplex fails to terminate, then it must cycle.

Proof:

- there is a finite number of basis and simplex chooses to always increase the cost
- hence the only situation for not terminating is that a basis must appear again. Two dictionaries with the same basis are the same (related to uniqueness of basic solutions)

## **Pivot Rules**

Rules for breaking ties in selecting entering improving variables (more important than selecting leaving variables)

- Largest Coefficient: the improving var with largest coefficient in last row of the tableau. Original Dantzig's rule, can cycle
- Largest increase: absolute improvement: argmax<sub>j</sub>{c<sub>j</sub>θ<sub>j</sub>} computationally more costly
- Steepest edge the improving var that if entering in the basis moves the current basic feasible sol in a direction closest to the direction of the vector c (ie, maximizes the cosine of the angle between the two vectors):

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta \implies \max rac{\mathbf{c}^{\mathcal{T}} (\mathbf{x}_{ ext{new}} - \mathbf{x}_{ ext{old}})}{\| \mathbf{x}_{ ext{new}} - \mathbf{x}_{ ext{old}} \|}$$

- Bland's rule chooses the improving var with the lowest index and, if there are more than one leaving variable, the one with the lowest index Prevents cycling but is slow
- Random edge select var uniformly at random among the improving ones
- Perturbation method perturb values of b<sub>i</sub> terms to avoid b<sub>i</sub> = 0, which must occur for cycling. To avoid cancellations: 0 < ε<sub>m</sub> ≪ ε<sub>m-1</sub> ≪ ··· ≪ ε<sub>1</sub> ≪ 1 can be shown to be the same as lexicographic method, which prevents cycling

# Efficiency of Simplex Method

- Trying all points is  $\approx 4^m$
- In practice between 2m and 3m iterations
- Klee and Minty 1978 constructed an example that requires  $2^n 1$  iterations:



• random shuffle of indexes + lowest index for entering + lexicographic for leaving: expected iterations  $< e^{C\sqrt{n \ln n}}$ 

# Efficiency of Simplex Method

- unknown if there exists a pivot rule that leads to polynomial time.
- Clairvoyant's rule: shortest possible sequence of steps Hirsh conjecture O(n) but best known  $n^{1+\ln n}$



• smoothed complexity: slight random perturbations of worst-case inputs D. Spielman and S. Teng (2001), Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time  $O(max(n^5 \log^2 m, n^9 \log^4 n, n^3 \sigma^{-4}))$ 

## Outline

1. Exception Handling

2. Initialization

## Initial Infeasibility

 $\begin{array}{rll} \max & x_1 \ - \ x_2 \\ x_1 \ + \ x_2 \ \le \ 2 \\ 2x_1 \ + \ 2x_2 \ \ge \ 5 \\ x_1, x_2 \ \ge \ 0 \end{array} \qquad \begin{array}{rl} \max & x_1 \ - \ x_2 \\ x_1 \ + \ x_2 \ + \ x_3 \ = \ 2 \\ 2x_1 \ + \ 2x_2 \ - \ x_4 \ = \ 5 \\ x_1, x_2, x_3, x_4 \ \ge \ 0 \end{array}$ 

Initial tableau

 $\rightsquigarrow$  we do not have an initial basic feasible solution!!

In general finding any feasible solution is difficult as finding an optimal solution, otherwise we could do binary search

#### Auxiliary Problem (I Phase of Simplex)

We introduce auxiliary variables:

 $w^* = \max -x_5 \equiv \min x_5$   $x_1 + x_2 + x_3 = 2$   $2x_1 + 2x_2 - x_4 + x_5 = 5$  $x_1, x_2, x_3, x_4, x_5 \ge 0$ 

if  $w^* = 0$  then  $x_5 = 0$  and the two problems are equivalent if  $w^* > 0$  then not possible to set  $x_5$  to zero.

#### • Initial tableau

Keep z always in basis

• we reach a canonical form simply by letting  $x_5$  enter the basis:

| x1 | x2 | x3 | x4 | x5 | -z | -w | b | \_\_\_\_+ 2 | 0 | -1 | 2 | 1 1 0 1 -1 | 1 0 Z 0 1 1 I TV+TT I 21 2 | 0 | -1 | 0 | 0 1 1 5 1

now we have a basic feasible solution!

•  $x_1$  enters,  $x_3$  leaves

| x1 | x2 | x3 | x4 | x5 | -z | -w | ---+---+----+----0 | -2 |0 1 -1 I 0 | TT-2T' 1 0 0 1 0 | -2 |1 | III-I' 0 | IV-2I' | 0 0 -2 -1 0 0 1 1 1

 $w^* = -1$  then no solution with  $X_5 = 0$  exists then no feasible solution to initial problem



22

### Initial Infeasibility - Another Example

$$\begin{array}{rll} \max & x_1 \ - \ x_2 \\ x_1 \ + \ x_2 \ \le 2 \\ 2x_1 \ + \ 2x_2 \ \ge 2 \\ x_1, x_2 \ \ge 0 \end{array} \qquad \begin{array}{rll} \max & x_1 \ - \ x_2 \\ x_1 \ + \ x_2 \ + \ x_3 \ = 2 \\ 2x_1 \ + \ 2x_2 \ - \ x_4 \ = 2 \\ x_1, x_2, x_3, x_4 \ \ge 0 \end{array}$$

Auxiliary problem (I phase):

 $w = \max -x_5 \equiv \min x_5$   $x_1 + x_2 + x_3 = 2$   $2x_1 + 2x_2 - x_4 + x_5 = 2$  $x_1, x_2, x_3, x_4, x_5 \ge 0$  Initial tableau

 $\rightsquigarrow$  we do not have an initial basic feasible solution.

• set in canonical form:

| 1     |     | x1 | Т   | x2 | T   | xЗ | Т  | x4 | T   | x5 | Т   | -z | Т  | -W | T   | b | Ι   |
|-------|-----|----|-----|----|-----|----|----|----|-----|----|-----|----|----|----|-----|---|-----|
|       | -+- |    | -+- |    | -+- |    | +- |    | -+- |    | .+. |    | +- |    | .+. |   | - 1 |
| 1     | Т   | 1  | Т   | 1  | Т   | 1  | Т  | 0  | Т   | 0  | Т   | 0  | Т  | 0  | Τ   | 2 | I   |
| 1     |     | 2  | T   | 2  | T   | 0  | T  | -1 | T   | 1  | Τ   | 0  | Т  | 0  | Ι   | 2 | T   |
| z     |     | 1  | T   | -1 | T   | 0  | T  | 0  | T   | 0  | Τ   | 1  | Т  | 0  | Ι   | 0 | T   |
|       | -+- |    | -+- |    | -+- |    | +- |    | -+- |    | .+. |    | +. |    | .+. |   | - 1 |
| IV+II |     | 2  | Т   | 2  | Т   | 0  | Т  | -1 | Т   | 0  | Т   | 0  | Т  | 1  | T   | 2 | I   |

•  $x_1$  enters,  $x_5$  leaves

 $w^* = 0$  hence  $x_5 = 0$  we have a starting feasible solution for the initial problem.



Optimal solution:  $x_1 = 2, x_2 = 0, x_3 = 0, x_4 = 2, z = 2$ .



# In Dictionary Form

$$x_{3} = 2 - x_{1} - x_{2}$$
  

$$x_{4} = -5 + 2x_{1} + 2x_{2}$$
  

$$z = x_{1} + x_{2}$$
  
sol. infeasible

We introduce corrections of infeasibility

It is still infeasible but it can be made feasible by letting  $x_0$  enter the basis which variable should leave? the most infeasible: the var with the *b* term whose negative value has the largest magnitude

### Simplex: Exception Handling, Summary

Exception Handling Initialization

Handling exceptions in the Simplex Method

- 1. Unboundedness
- 2. More than one solution
- 3. Degeneracies
  - benign
  - cycling
- 4. Infeasible starting Phase I + Phase II

a.  $F = \emptyset$ 

- b.  $F \neq \emptyset$  and  $\exists$  solution
  - i) one solution
  - ii) infinite solution
- c.  $F \neq \emptyset$  and  $\not\exists$  solution