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Derivation and Motivation

Dual Problem Theory

Dual variables y in one-to-one correspondence with the constraints:

Primal problem: Dual Problem:
max z=c'x min w=b'y
Ax < b Aly>c

x>0 y>0



Bounding approach

max 4x; + x> + 3x3
X1 +4X2 S 1
3x1 4+ x0 + x3 <3
x1,X2,x3 > 0

a feasible solution is a lower bound but how good?
By tentatives:

(X17X23X3) - (]‘/O,O) ~ Z" 2 4

(x1,x2,x3) =(0,0,3) ~ z* > 9

What about upper bounds?

2-( x1 +4x ) <2-1

+3- (3 + x2 + x3) <3-3

4X1 —|—X2—|—3X3 S 11X1—|—11X2+3X3 S 11
cTx < yT Ax <yTh

Hence z* < 11. Is this the best upper bound we can find?
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Derivation and Motivation
Theory

multipliers y1, y» > 0 that preserve sign of inequality

yvi-( x +4x ) < (1)
+yo - (3x1 + x2 + x3) < »(3)
(y1 +3y2)x1 + (4y1 + y2)x2 + yox3 < y1 + 3y

Coefficients

yi +3y» >4
4y + yp >1
y2 >3

z=4x1+x2+3x3 < (y1 + 3y2)x1 + (4y1 + y2)x2 + y2x3 < y1 + 3y» then to
attain the best upper bound:

min y1 + 3y»
y1 +3y2 >4
i+ yo 21
y2 >3
yi,2 >0



Derivation and Motivation

Multipliers Approach e

T a1 @12 --- Anlarntl dnt2 .- Amen 01y

Tm dml dm2 - -- @mn!dm n+l dmnt2 - - - am,ern‘O‘bm

Tmyl | G G ... ¢! 0 o ... 0 10
Working columnwise, since at optimum ¢, <0 forall k =1,....n+ m:
mai  +  Mean ...t Tmadm + Tmiia < 0
_Man_ A Medm ...t Mmdmn t+ Tmi1Cn < 0
T131,n+1, T2 041, -+ Tmdm,ntl <0
T ntmy  M232n4ms oo Tmdmingm = 0
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Tm1 = 1
T1b1 —+ o bo .+ Tmbm (< 0)
(since from the last row z = —7b and we want to maximize z then we would

min(—mb) or equivalently max wb)



max mib1 + by ...+ Tmbm
mia11 + T2az ...+ Tmam <
T1din + T2a2n ... + Tmamn <
T1,7T2y...TTm §

max —yib1 + —y2b2 ...+ —Ymbm

—yi1a11 + —Y2a21 ...+ —Ymami <

—Y131n + —Y2a2n ... + —Ymamn
Vi, Y2, — Ym

min w=>5b"y
ATy > ¢
y=0
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Example

max 6x; + 8x»
5x; + 10x < 60
4X1 + 4X2 S 40
X1, X2 Z 0

571 + 4m 4+ 613 <0
10y + 47, + 813 <0
1my + Omp + 03 <0
Omy 4+ 1mp 4+ 0m3 <0
Omy + Omp +1m3 =1
607, + 407>

yi=-m2>0
y2=-m >0

Derivation and Motivation
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Derivation and Motivation

Duality Recipe o

' Primal linear program  Dual linear program ’
Variables ' L1, To,s ey Ty YL Y25y YU ’
Matrix ' A AT ’
Right-hand side ' b c )
Objective function ' max cT'x min b’y )
Constraints ith constraint has < y; >0
> ;<0
= Yi € R
z; >0 jth constraint has >
z; <0 <
T € R =

10
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Derivation and Motivation

Symmetry Theery

The dual of the dual is the primal:

Primal problem: Dual Problem:
max z=c'x min - w=bTy
Ax < b ATy > ¢
x>0 y=>0

Let's put the dual in the standard form

Dual problem: Dual of Dual:
min bTy = —max—bTy —min ¢ x
y =0 x 20
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Derivation and Motivation

Weak Duality Theorem Doy
As we saw the dual produces upper bounds. This is true in general:

Theorem (Weak Duality Theorem)

Given:

(P) max{c"x | Ax < b,x > 0}
(D) min{b"y [ ATy > c,y >0}

for any feasible solution x of (P) and any feasible solution y of (D):

cTx<bTy

Proof:

From (D) ¢; < >, y;a; Vj and from (P) Z}’Zl ajx; < b; Vi
From (D) y; > 0 and from (P) x; > 0

Y ogx < Z(Zy;ay>xj=z aixi | yi <> biyi
j=1 j=1 \i=1 1 i=1

i=1 \ j=
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Derivation and Motivation

Strong Duality Theorem Thory

Due to Von Neumann and Dantzig 1947 and Gale, Kuhn and Tucker 1951.

Theorem (Strong Duality Theorem)
Given:

(P) max{cTx | Ax < b,x > 0}
(D) min{bTy | ATy > c,y >0}

exactly one of the following occurs:
. (P) and (D) are both infeasible
. (P) is unbounded and (D) is infeasible
. (P) is infeasible and (D) is unbounded

. (P) has feasible solution x* = [x{, ..., x}]
(D) has feasible solution y* = [y, ..., y}]

~

A W N

CTX* _ bTy*
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Theory

Proof:

e all other combinations of 3 possibilities (Optimal, Infeasible, Unbounded)
for (P) and 3 for (D) are ruled out by weak duality theorem.

e we use the simplex method. (Other proofs independent of the simplex
method exist, eg, Farkas Lemma and convex polyhedral analysis)

e The last row of the final tableau will give us

n+m n

m
_ ok = — * = = *
z=2z + CkXk = Z° + Gixj + Cn+iXn+i (™)
k=1 j=1 i=1

= z" + Cgxg + Cnxn

In addition, z* = 377, ¢;x;" because optimal value
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Derivation and Motivation
Theory

e Let's verify the claim:
We substitute in (*): z = > ¢jxj, Chi1 = —y; and
Xpii = bj — Zf:l ajx; for i=1,2,...,m (n+ i are the slack variables)

n m n
Yoo =2+ G-y v [ bi—) ax
Jj=1 i=1 j=1
m n m
i=1 j=1 i=1

This must hold for every (xi, x2, ..., x,) hence:
m
z* = Z by’ = y* satisfies ¢"x* = bT y*
i=1

m
cj:Ej—i—Za,-J-y,-*,jzl,Z...,n
i=1
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Derivation and Motivation
Theory

Since ¢, < 0 forevery k =1.2.....n+ m:

m m
G <0~ ijZy,*a;J-ng Zy,-*a,-J-ZCJ- j=12,....n
i=1 i=1
* —

En+i§0W Yi = én+i207 I':1727"'7m

= y* is also dual feasible solution
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Derivation and Motivation

Complementary Slackness Theorem Theery

Theorem (Complementary Slackness)

A feasible solution x* for (P)
A feasible solution y* for (D)
Necessary and sufficient conditions for optimality of both:

m
i=1

If x; 0 then 5"y a; = ¢; (no surplus)
If>" y*aj > ¢j then xj* =0

Proof: In scalars

Z* _ CTX* S y*AX* S bTy* _ W* n m
=D yiay) xf =0
Hence from strong duality theorem: =t =S
<0
Xt —yAx* =0
Hence each term must be =0
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Duality - Summary

e Derivation:

Economic interpretation

Bounding Approach

Multiplier Approach

Recipe

Lagrangian Multipliers Approach (next time)

e Theory:

Symmetry
Weak Duality Theorem
Strong Duality Theorem

Complementary Slackness Theorem

Theory
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