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Motivation

Complexity of single pivot operation in standard simplex:
e entering variable O(n)
e leaving variable O(m)

e updating the tableau O(mn)

Problems with this:

e Time: we are doing operations that are not actually needed
Space: we need to store the whole tableau: O(mn) floating point
numbers

e Most problems have sparse matrices (many zeros)
sparse matrices are typically handled efficiently
the standard simplex has the "Fill in"effect: sparse matrices are lost

e accumulation of Floating Point Errors over the iterations
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Revised Simplex Method

Revised Simplex Method Efficioncy Ieames

Several ways to improve wrt pitfalls in the previous slide, requires matrix
description of the simplex.

z max ¢’ x max{c”x | Ax = b,x > 0}
ma CiXj s N Z
X J; X Ax=Db
x>0

ng ajjXj < bi i=1.m Ac Rmx(n+m)

x> 0j=1.n ceRO™ becR™ xecR™M

At each iteration the simplex moves from a basic feasible solution to another.

For each basic feasible solution:

B ={1...m} basis e xy =0
N={m+1...m+n} e xg >0

Ag = [a1 ...a,,] basis matrix

A/\[ = [am+1 .. am+,,]
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Ax = Anyxy + Agxg = b

ABXB =b-— ANXN

Theorem J

Basic feasible solution <= Ag is non-singular

Xg = Aglb — AglANXN



for the objective function:
z=c'x= cExB + C,-(,—XN
Substituting for xz from above:
z = cL(Agb — A5 Anxy) + clixn =
=cLAg'b + (cf — LA An)xn
Collecting together:

XB: 71b AilANXN
z—cBA 1b+(cN—cBA LAN)xn
N—_——

A

In tableau form, for a basic feasible solution corresponding to B we have:

| | |
| | |
A,glAN i | i 0 i Az'b We do not need to
| I compute all elements
,,,,,,,,,,,, L ofA
el —chAs'ANT 0 1] —ckAg'D
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max X1 + X2 max xi1 + x2
—x1+x <1 —x1 + X2 + X3 =1
X1 <3 X1 + Xa =3
x2 <2 X2 + x5 = 2
X1, X2 2 0 X1,X2,X3, X4, X5 2 0
Initial tableau After two iterations
1 X1 x21x3 x4 x51-z1b] (x1 x21 x3 x4 x51-z1b]
217171 0 0, 01 I"170,=1 0 1] 071,
1 00 1 0! 0!3! 0o 1! 0 0 1! 0!2!
0 10 O 1! 0'2! 0o o1 1 —1!" 0t2!
|, |l — — — — — — 4 ——4 4 P 4 ——4
1 110 0 01 1101 1o 0 1 0 —21 1131

Basic variables x1, x2, x4. Non basic: x3, x5. From the initial tableau:
-110 10 X1 -

As=| 101 Ay=1[00] xz= |x xN_Lf]
010 01 X4 >

cg=[110] cy=[00]
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e Entering variable:
in std. we look at tableau, in revised we need to compute:
el —chAg 1AN
1. find y7 = cJAg" (by solving yT Ag = ¢}, the latter can be done
more efficiently)
2. calculate ¢/, —y " Ay
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Step 1:
-110
vi 2 y3] | 1 01| =[110] y Ag =cj
010
-10 1 ~1
110 00 1|=]|0 cgAg =y’
11 -1 2
Step 2:
10
[00]-[-102]|00]=[1 -2 ey —y An
01

(Note that they can be computed individually: ¢; —y'a; > 0)
Let's take the first we encounter x3
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Leaving variable
we increase variable by largest feasible amount 6

Rl: xy —x3+x5 =1 x1=14+x3>0
R2: xo + 0x3 + x5 = 2 X=22>0
R3: —x3+x4 — x5 =2 x4 =2—-—x3>0

J— * — _1 .
xg = xp — Ag Anxn d is the column of AglA,\, that

xg = xg — dff corresponds to the entering variable,
ie, d = Agla where a is the entering
column
3. Find 0 such that xg stays positive:
Find d = Ag'a (by solving Agd = a)

Step 3:

di -10 1] |1 -1 1 -1
d|l=] 00 1| |0 = d=| 0| = xg=|2|—| 0]6>0
ds 11 -1| 10 1 2 1

2—0>0 = 0 <2~ x4 leaves



Revised Simplex Method

So far we have done computations, but now we save the pivoting
update. The update of Ag is done by replacing the leaving column by
the entering column

x17d19 3 -111
XEZ X27d2¢9 =12 AB: 100
0 2 010

Many implementations depending on how y" Az = ¢/ and Agd = a are
solved. They are in fact solved from scratch.

many operations saved especially if many variables!
special ways to call the matrix A from memory

better control over numerical issues since A5" can be recomputed.
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2. Efficiency lssues
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Solving the two Systems of Equations

Agx = b solved without computing A"
(costly and likely to introduce numerical inaccuracy)

Recall how the inverse is computed:

For a 2 x 2 matrix the matrix inverse is

r T
A_|? b _1 1 [d —c 1
lc d |A] |=b a ad — bc
For a 3 x 3 matrix the matrix inverse is
a1 a2 a3 i a2 az az
A= + -
= [a@21 a22 az23 ds2 ass asi
331 as2 ass 1
—1 diz2 ai3 a1
A= — +
|A| asz ass asi
d12 a3 a1
+ —
L d22 az3 asi

Revised Simplex Method
Efficiency Issues

d —b

—Cc a

anss a1 ax| |
+

as3 a31 as2

a13|  |a11 d12

as3 as31 asz2

ais di1 di2
+

as3 azi1 az2| |
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Let Ag = B, kth iteration

By be the matrix with col p differing from By 1

Column p is the a column appearing in B,_1d = a solved at 3)
Hence:

Bk = Br—1Ex
Ej is the eta matrix differing from id. matrix in only one column
-111 —-110] |1 -1
100{=] 101 1 0
010 010 1

No matter how we solve y B, ; = ¢/ and B,_1d = a, their update always
relays on B, = Bj_1E, with Ej available.
Plus when initial basis by slack variable By = / and By = E1, B = EyEx -+

By = E1E> ... Ef eta factorization

(Y E)E)Es) - )Ex=ck, u Es=cit, vV Es=u",w E=v,y Ei=w'
(El(Ez"'Ekd)):a7 Elu:a, E2V:U7 E3W:V, E4d:W
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Worth to consider also the case of By # I:

By = BoE1E> . .. Ex eta factorization

((y"Bo)Er)Ez) -+ )Ex = ¢
(Bo(E1 s Ekd)) =a

We need an LU factorization of By
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Revised Simplex Method

LU Factorization S,

To solve the system Ax = b by Gaussian Elimination we put the A matrix in
row echelon form by means of elemntary row operations. Each row operation
corresponds to multiply left and right side by a lower triangular matrix L and
a permuation matrix P. Hence, the method:

Ax = b
L1P1AX = L1P1b
L2P2L1P]_AX = L2P2L1P]_b
LinPm ... LoPoLi PyAx = LyPy ... LoP2L1 Pib
thus

U=LnPm...LoPL1P1A triangular factorization of A

where U is an upper triangular matrix whose entries in the diagonal are ones.
(if A is nonsingular such triangularization is unique)

[see numerical example in Va sc 8.1]
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We can compute the triangular tfactorization of By before the initial iterations

of the simplex:
LonPm ... LoPal1P1By = U

We can then rewrite U as
U=UnUp-1..., U1

Hence, for B, = BoE1Es> ... Ej:

LnPr ... LoPoLi P1By = UpUm—1 ... U1E1Eo - - - Ei

Then y" B, = c/; can be solved by
first solving:

(YT Um)Um—1) -+ )Exc =5

and then replacing

y' by (Y LmPm) -+ )L1Py

L U
yL'U=c
wlU =c
w=yl! = y=Iw



Efficiency Issues

Solving y " B, = ¢/, also called backward transformation (BTRAN)

Solving Bid = a also called forward transformation (FTRAN)

E; matrices can be stored by only storing the column and the position

If sparse columns then can be stored in compact mode, ie only nonzero
values and their indices

Same for the triangular eta matrices L;, U;

while for P; just two indices are needed
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More on LP Efficiency Issues

e Tableau method is unstable: computational errors may accumulate.
Revised method has a natural control mechanism: we can recompute
Ag' at any time

e Commercial and freeware solvers differ from the way the systems

y" =cLAg" and Agd = a are resolved
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Efficient Implementations Eficiency lssues

e Dual simplex with steepest descent

Linear Algebra:

e Dynamic LU-factorization using Markowitz threshold pivoting (Suhl and
Suhl, 1990)

e sparse linear systems: Typically these systems take as input a vector with
a very small number of nonzero entries and output a vector with only a
few additional nonzeros.

Presolve, ie problem reductions: removal of redundant constraints, fixed
variables, and other extraneous model elements.

dealing with degeneracy, stalling (long sequences of degenerate pivots),
and cycling:
e bound-shifting (Paula Harris, 1974)

o Hybrid Pricing (variable selection): start with partial pricing, then switch
to devex (approximate steepest-edge, Harris, 1974)

A model that might have taken a year to solve 10 years ago can now
solve in less than 30 seconds (Bixby, 2002).
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