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• Set R can be represented by real-number line. Set R2 of real number
pairs (a1, a2) can be represented by the Cartesian plane.

• To a point in the plane A = (a1, a2) it is associated a position vector
a = (a1, a2)

T , representing the displacement from the origin (0, 0). �
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• Two displacement vectors of same length and direction are considered to
be equal even if they do not both start from the origin

• If object displaced from O to P by displacement p and from P to Q by
displacement v, then the total displacement satisfies q = p + v = v + q
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• v = q− p, think of v as the vector that is added to p to obtain q.
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• the length of a vector a = (a1, a2)
T is denoted by ||a|| and from

Pythagoras

||a|| =
√

a2
1 + a2

2 =
√
〈a, a〉

• the direction is given by the components of the vector

• the unit vector can be derived from

u =
1
‖v‖

v

Theorem (Inner Product)

Let a,b ∈ R2 and let θ denote the angle between
them. Then,

〈a,b〉 = ‖a‖ ‖b‖ cos θ

a c = b− a

b
θ

Two vectors a and b are orthogonal (or normal or perpendicular) if and only
if 〈a,b〉 = 0.
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a =

a1
a2
a3

 ‖a‖ =
√

a2
1 + a2

2 + a2
3

〈a,b〉 = ‖a‖ ‖b‖ cos θ
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• Cartesian line equation y = ax + b

• another way is by giving position vectors.
We can let x = t where t is any real number. Then
y = ax + b = at + b. Hence the position vector x = (x , y)T

x =

[
t

at + b

]
= t

[
1
a

]
+

[
0
b

]
= tv + (0, b)T , t ∈ R

• To derive the Cartesian equation: locate one particular point on the line,
eg, the y intercept. Then the position vector of any point on the line is a
sum of two displacements, first going to the point and then along the
direction of the line. Try with P = (−1, 1) and Q = (3, 2)

• In general, any line in R2 is given by a vector equation with one
parameter of the form

x = p + tv

where x is the position vector, p is any particular point and v is the
direction of the line
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x = p+tv

x =

13
4

+ t

 1
2
−1



x =

37
2

+ s

−3−6
3

 , s, t ∈ R

Are these lines intersecting?
What is the Cartesian equation of the
first?
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In R2, two lines are:

• parallel

• intersecting in a unique point

In R3, two lines are:

• parallel

• intersecting in a unique point

• skew (lay on two parallel planes)

What about these lines? Do they intersect? Are they coplanar?

L1 :

x
y
z

 =

13
4

+ t

 1
2
−1


L2 :

x
y
z

 =

56
1

+ t

−21
7


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Vector parametric equation:

• The position of vectors of points on a plane is described by:

x = p + sv + tw, s, t ∈ R

provided v and w are non-zero and not parallel.
(p position vector, v and w displacement vectors).

• How is the plane through the origin? What if v and w are parallel?

• Two intersecting lines determine a plane. What is its description?
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Cartesian equation:

• Let n be a given vector in R3. All positions represented by postion
vectors x that are orthogonal to n describe a plane through the origin.
(n is called a normal vector to the plane)

• Vectors n and x are orthogonal iff

〈n, x〉 = 0,

hence this equation describes a plane.
If n = (a, b, c)T and x = (x , y , z)T , then the equation becomes:

ax + by + cz = 0
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• For a point P on the plane with position vector p and a position vector x
of any other point on the plane, the displacement vector x− y lies on
the plane and n ⊥ x− p

• Conversely, if the position vector x of a point is such that

〈n, x− p〉 = 0

then the point represented by x lies on the plane.

• hence, 〈n, x〉 = 〈n,p〉 = d and the equation becomes:

ax + by + cz = d

Eg.: 2x − 3y − 5z = 2 has n = (2,−3,−5)T and passes through (0, 0, e)

16



Geometric Insight
Linear Systems

Vector parametric equation ⇐⇒ Cartesian equation

x
y
z

 = s

 1
2
−1

+ t

21
7

 = sv + tw, s, t ∈ R

3x − y + z = 0, n =

 3
−1
1

 , x =

x
y
z



〈n, v〉 = 0, 〈n,w〉 = 0 and 〈n, sv + tw〉 = 0 for s, t ∈ R

What changes if the plane does not pass through the origin?
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Are the two following planes parallel?

x + 2y − 3x = 0 and − 2x − 4y + 6z = 4

and these?

x + 2y − 3x = 0 and x − 2y + 5z = 4
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• Point in Rn: a = (a1, a2, . . . , an)
T

• Length of a vector x = (x,x2, . . . , xn)
T

‖x‖ =
√

x2
1 + x2

2 + · · ·+ x2
n =

√
〈x, x〉.

• The vectors in Rn are orthogonal iff

〈v,w〉 = 0.

• Line:

x = p + tv, t ∈ R How many Cartesian equations?

• The set of points (x1, x2, . . . , xn) that satisfy a Cartesian equation

a1x1 + a2x2 + · · ·+ anxn = d

is called hyperplane. (〈n, x− p〉 = 0.) What is the vector equation?
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Definition (System of linear equations, aka linear system)

A system of m linear equations in n unknowns x1, x2, . . . , xn is a set of m
equations of the form

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

am1x1 + am2x2 + · · · + amnxn = bm

The numbers aij are known as the coefficients of the system.

We say that s1, s2, . . . , sn is a solution of the system if all m equations hold
true when

x1 = s1, x2 = s2, . . . , xn = sn
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x1 + x2 + x3 + x4 + x5 = 3
2x1 + x2 + x3 + x4 + 2x5 = 4
x1 − x2 − x3 + x4 + x5 = 5
x1 + x4 + x5 = 4

has solution

x1 = −1, x2 = −2, x3 = 1, x4 = 3, x5 = 2.

Is it the only one?

x1 + x2 + x3 + x4 + x5 = 3
2x1 + x2 + x3 + x4 + 2x5 = 4
x1 − x2 − x3 + x4 + x5 = 5
x1 + x4 + x5 = 6

has no solutions
22
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Definition (Coefficient Matrix)

The matrix A = (aij), whose (i , j) entry is the coefficient aij of the system of
linear equations is called the coefficient matrix.

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



Let x = (x1, x2, . . . , xn)
T then

m × n


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


n × 1

x1
x2
...
xn

 =


n × 1

a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
...

am1x1 + am2x2 + · · ·+ amnxn


hence, the linear system can be written also as Ax = b
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How do we find solutions?

I: x1 + x2 + x3 = 3
II: 2x1 + x2 + x3 = 4
III: x1 − x2 + 2x3 = 5

Eliminate one of the variables from two of the equations

I’=I: x1 + x2 + x3 = 3
II’=II-2*I: − x2 − x3 = −2
III’=III: x1 − x2 + 2x3 = 5

I’=I’: x1 + x2 + x3 = 3
II’=II’: − x2 − x3 = −2
III’=III’-I: x1 − x2 + 2x3 = 5

We can now eliminate one of the variables in the last two equations to obtain
the solution
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Row operations that do not alter solutions:

O1: multiply both sides of an equation by a non-zero constant

O2: interchange two equations

O3: add a multiple of one equation to another

These operations only act on the coefficients of the system
For a system Ax = b:

[
A b

]
=

 1 1 1 3
2 1 1 4
1 −1 2 5


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Definition (Augmented Matrix and Elementary row operations)

For a system of linear equations Ax = b with

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 x =


x1

x2
...
xn

 b =


b1

b2
...

bm


the augmented matrix of the system and the row operations are:

[
A b

]
=


a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm


RO1: multiply a row by a non-zero constant

RO2: interchange two rows

RO3: add a multiple of one row to another
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