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Rank
Range
Vector SpacesSurvey

The problem from the survey: x + z = 1
3x + 4y + z = 1

+ 4y − 2z = −2

det(A) = 1
∣∣∣∣4 1
4 −2

∣∣∣∣+ 1
∣∣∣∣3 0
1 −2

∣∣∣∣ = 0

Hence we cannot solve by inverse nor by Cramer’s rule. We proceed by
Gaussian elimination:1 0 1 1

3 4 1 1
0 4 −2 −2

→
1 0 1 1
0 1 −1/2 −1/2
0 0 0 0

 x = 1− t
y = 1

2 t − 1
2

z = t
,∀t ∈ R

x
y
z

 =

 1
− 1

2
0

+

−11
2
1

 t,∀t ∈ R infinitely many solutions
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In Python:� �
import sympy as sy
import numpy as np
b=np.array([3,4,1])
a=np.array([1,0,1])
c=b−3∗a
A=np.vstack([a,b,c])
M=sy.Matrix(A)
M.rref()
np.linalg.det(A) # 1.3322676295501906e−15
np.dot(np.linalg.inv(A),A) # array([[ 0., 0., −1.],[ 0., 1., 0.],[ 0., 0., 1.]])
np.linalg.solve(A,[1,1,−2]) # array([ 0., 0., 1.])� �
Hence Python for numerical reasons does not recognize the determinant to
be null and solves the system returning only one particular solution.

Knoweldge of the theory of linear algebra is important to avoid mistakes!
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Rank
Range
Vector SpacesRank

• Synthesis of what we have seen so far under the light of two new
concepts: rank and range of a matrix

• We saw that:
every matrix is row-equivalent to a matrix in reduced row echelon form.

Definition (Rank of Matrix)

The rank of a matrix A, rank(A), is
• the number of non-zero rows, or equivalently
• the number of leading ones

in a row echelon matrix obtained from A by elementary row operations.

 For an m × n matrix A,

rankA ≤ min{m, n},

where min{m, n} denotes the smaller of the two integers m and n.
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Example

M =

1 2 1 1
2 3 0 5
3 5 1 6



1 2 1 1
2 3 0 5
3 5 1 6

 R′
2=R2−2R1

R′
3=R3−3R1−−−−−−−→

1 2 1 1
0 −1 −2 3
0 −1 −2 3

 R′
2=−R2

R′
3=R3−R2−−−−−−−→

1 2 1 1
0 1 2 −3
0 0 0 0



 rank(M) = 2
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Range
Vector SpacesExtension of the main theorem

Theorem
If A is an n × n matrix, then the following statements are equivalent:

1. A is invertible

2. Ax = b has a unique solution for any b ∈ R
3. Ax = 0 has only the trivial solution, x = 0

4. the reduced row echelon form of A is I .

5. |A| 6= 0

6. the rank of A is n
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Vector SpacesRank and Systems of Linear Equations

x + 2y + z = 1
2x + 3y = 5
3x + 5y + z = 4 1 2 1 1
2 3 0 5
3 5 1 4

 R′
2=R2−2R1

R′
3=R3−3R1−−−−−−−→

 1 2 1 1
0 −1 −2 3
0 −1 −2 1

 R′
2=−R2

R′
3=R3−R2−−−−−−−→

 1 2 1 1
0 1 2 −3
0 0 0 −2


x + 2y + z = 1

x + 2z = −3
0x + 0y + 0z = −2

It is inconsistent!

The last row is of the type
0 = a, a 6= 0, that is, the augmenting
matrix has a leading one in the last
column
rank(A) = 2 6= rank(A | b) = 3

1. A system Ax = b is consistent if and only if the rank of the augmented
matrix is precisely the same as the rank of the matrix A.
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2. If an m × n matrix A has rank m, the system of linear equations,
Ax = b, will be consistent for all b ∈ Rn

– Since A has rank m then there is a leading one in every row. Hence
[A | b] cannot have a row [0, 0, . . . , 0, 1] =⇒ rankA 6< rank(A | b)

– [A | b] has also m rows =⇒ rank(A) 6> rank(A | b)
– Hence, rank(A) = rank(A | b)

Example

B =

1 2 1 1
2 3 0 5
3 5 1 4

 → · · · →
1 0 −3 0
0 1 2 0
0 0 0 1

 rank(B) = 3

Any system Bx = d in 4 unknowns and 3 equalities with d ∈ R3 is consistent.

Since rank(A) is smaller than the number of variables, then there is a
non-leading variable. Hence infinitely many solutions!
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B =


1 3 −2 0 0 0
0 0 1 2 3 1
0 0 0 0 1 5
0 0 0 0 0 0

 → · · · →

1 3 0 4 0 −28
0 0 1 2 0 −14
0 0 0 0 1 5
0 0 0 0 0 0


rank(B) = 3 < 5 = n

x1 + 3x2 + 4x4 = −28
x3 + 2x4 = −14

x5 = 5

x1, x3, x5 are leading variables; x2, x4 are non-leading variables (set them to
s, t ∈ R)

x1 = −28− 3s − 4t
x2 = s
x3 = −14− 2t
x4 = t
x5 = 5

x =


x1
x2
x3
x4
x5

 =


−28
0
−14
0
5

+


−3
1
0
0
0

 s +


−4
0
−2
1
0

 t
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Let Ax = b be a general linear system in n variables and m equations:

• If rank(A) = r < m and rank(A | b) = r + 1 then the system is
inconsistent. (the row echelon form of the augmented matrix has a row
[0 0 . . . 0 1])

• If rank(A) = r = rank(A | b) then the system is consistent and there are
n − r free variables;
if r < n there are infinitely many solutions, if r = n there are no free
variables and the solution is unique

Let Ax = 0 be an homogeneous system in n variables and m equations,
rank(A) = r (always consistent):

• if r < n there are infinitely many solutions, if r = n there are no free
variables and the solution is unique, x = 0.
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Vector SpacesGeneral solutions in vector notation

Example

x =


x1
x2
x2
x4
x5

 =


−28
0
−14
0
5

+


−3
1
0
0
0

 s +


−4
0
−2
1
0

 t, ∀s, t ∈ R

For Ax = b:

x = p + α1v1 + α2v2 + · · ·+ αn−rvn−r , ∀αi ∈ R, i = 1, . . . , n − r

Note:
– if αi = 0,∀i = 1, . . . , n − r then Ap = b, ie, p is a particular solution
– if α1 = 1 and αi = 0,∀i = 2, . . . , n − r then

A(p + v1) = b −→ Ap + Av1 = b Ap=b−−−→ Av1 = 0
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Thus (recall that x = p + z, z ∈ N(A)):

• If A is an m × n matrix of rank r , the general solutions of Ax = b is the
sum of:

• a particular solution p of the system Ax = b and

• a linear combination α1v1 + α2v2 + · · ·+ αn−rvn−r of solutions
v1, v2, · · · , vn−r of the homogeneous system Ax = 0

• If A has rank n, then Ax = 0 only has the solution x = 0 and so Ax = b
has a unique solution: p
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Range
Vector SpacesRange

Definition (Range of a matrix)

Let A be an m × n matrix, the range of A, denoted by R(A), is the subset of
Rm given by

R(A) = {Ax | x ∈ Rn}

That is, the range is the set of all vectors y ∈ Rm of the form y = Ax for
some x ∈ Rn, or
all y ∈ Rm for which the system Ax = y is consistent.
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Recall, if x = (α1, α2, . . . , αn)
T is any vector in Rn and

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ai =


a1i

a2i
...

ami

 , i = 1, . . . , n.

Then A =
[
a1 a2 · · · an

]
and

Ax = α1a1 + α2a2 + . . .+ αnan

that is, vector Ax in Rn as a linear combination of the column vectors of A
Proof?

Hence R(A) is the set of all linear combinations of the columns of A.
 the range is also called the column space of A:

R(A) = {α1a1 + α2a2 + . . .+ αnan | α1, α2, . . . , αn ∈ R}

Thus, Ax = b is consistent iff b is in the range of A, ie, a linear combination
of the columns of A
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Example

A =

 1 2
−1 3
2 1


Then, for x = [α1, α2]

T

Ax =

 1 2
−1 3
2 1

[α1
α2

]
=

 α1 + 2α2
−α1 + 3α2
2α1 + α2

 =

 1
−1
2

α1 +

23
1

α2

so

R(A) =


 α1 + 2α2
−α1 + 3α2
2α1 + α2

 ∣∣∣∣∣∣ α1, α2 ∈ R


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Example x + 2y = 0
− x + 3y = −5

2x + y = 3

Ax =

 1 2
−1 3
2 1

[ 2
−1

]
=

 0
−5
3


 0
−5
3

 = 2

 1
−1
2

−
23
1

 = 2a1−a2

 x + 2y = 1
− x + 3y = −5

2x + y = 2

Ax = 0

has only the trivial solution x = 0.
(Why?) Only way:

0

 1
−1
2

+ 0

23
1

 = 0a1 + 0a2 = 0

Hence no way to express [1,−5, 2] as
linear expression of the two columns of
A.
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Rank
Range
Vector SpacesPremise

• We move to a higher level of abstraction

• A vector space is a set with an addition and scalar multiplication that
behave appropriately, that is, like Rn

• Imagine a vector space as a class of a generic type (template) in object
oriented programming, equipped with two operations.
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Definition (Vector Space)

A (real) vector space V is a non-empty set equipped with an addition and a
scalar multiplication operation such that for all α, β ∈ R and all u, v,w ∈ V :

1. u + v ∈ V (closure under addition)

2. u + v = v + u (commutative law for addition)

3. u + (v + w) = (u + v) + w (associative law for addition)

4. there is a single member 0 of V , called the zero vector, such that for all
v ∈ V , v + 0 = v

5. for every v ∈ V there is an element w ∈ V , written −v, called the
negative of v, such that v + w = 0

6. αv ∈ V (closure under scalar multiplication)

7. α(u + v) = αu + αv (distributive law)

8. (α+ β)v = αv + βv (distributive law)

9. α(βv) = (αβ)v (associative law for vector multiplication)

10. 1v = v
22
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• set Rn

• but the set of objects for which the vector space defined is valid are
more than the vectors in Rn.

• set of all functions F : R→ R.
We can define an addition f + g :

(f + g)(x) = f (x) + g(x)

and a scalar multiplication αf :

(αf )(x) = αf (x)

• Example: x + x2 and 2x . They can represent the result of the two
operations.

• What is −f ? and the zero vector?
23
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The axioms given are minimum number needed.
Other properties can be derived:
For example:

(−1)x = −x

0 = 0x = (1+ (−1))x = 1x + (−1)x = x + (−1)x

Adding −x on both sides:

−x = −x− 0 = −x + x + (−1)x = (−1)x

which proves that −x = (−1)x.

Try the same with −f .
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• V = {0}

• the set of m × n all matrices

• the set of all infinite sequences of real numbers,
y = {y1, y2, . . . , yn, . . . , }, yi ∈ R. (y = {yn}, n ≥ 1)

addition of y = {y1, y2, . . . , yn, . . . , } and z = {z1, z2, . . . , zn, . . . , } then:

y + z = {y1 + z1, y2 + z2, . . . , yn + zn, . . . , }

multiplication by a scalar α ∈ R:

αy = {αy1, αy2, . . . , αyn, . . . , }

• set of all vectors in R3 with the third entry equal to 0 (verify closure):

W =


x

y
0

 ∣∣∣∣∣∣ x , y ∈ R


25
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Vector SpacesLinear Combinations

Definition (Linear Combination)

For vectors v1, v2, . . . , vk in a vector space V , the vector

v = α1v1 + α2v2 + . . .+ αkvk

is called a linear combination of the vectors v1, v2, . . . , vk .
The scalars αi are called coefficients.

• To find the coefficients that given a set of vertices express by linear
combination a given vector, we solve a system of linear equations.

• If F is the vector space of functions from R to R then the function
f : x 7→ 2x2 + 3x + 4 can be expressed as a linear combination of:

f = 2g + 3h + 4k

where g : x 7→ x2, h : x 7→ x , k : x 7→ 1

• Given two vectors v1 and v2, is it possible to represent any point in the
Cartesian plane?
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Definition (Subspace)

A subspace W of a vector space V is a non-empty subset of V that is itself a
vector space under the same operations of addition and scalar multiplication
as V .

Theorem
Let V be a vector space. Then a non-empty subset W of V is a subspace if
and only if both the following hold:

• for all u, v ∈W, u + v ∈W
(W is closed under addition)

• for all v ∈W and α ∈ R, αv ∈W
(W is closed under scalar multiplication)

ie, all other axioms can be derived to hold true
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Example

• The set of all vectors in R3 with the third entry equal to 0.

• The set {0} is not empty, it is a subspace since 0 + 0 = 0 and α0 = 0
for any α ∈ R.

Example

In R2, the lines y = 2x and y = 2x + 1 can be defined as the sets of vectors:

S =

{[
x
y

] ∣∣∣∣ y = 2x , x ∈ R
}

U =

{[
x
y

] ∣∣∣∣ y = 2x + 1, x ∈ R
}

S = {x | x = tv, t ∈ R} U = {x | x = p + tv, t ∈ R}

v =

[
1
2

]
, p =

[
0
1

]
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Example (cntd)

1. The set S is non-empty, since 0 = 0v ∈ S .
2. closure under addition:

u = s
[
1
2

]
∈ S , w = t

[
1
2

]
∈ S , for some s, t ∈ R

u + w = sv + tv = (s + t)v ∈ S since s + t ∈ R
3. closure under scalar multiplication:

u = s
[
1
2

]
∈ S for some s ∈ R, α ∈ R

αu = α(s(v)) = (αs)v ∈ S since αs ∈ R

Note that:

• u,w and α ∈ R must be arbitrary
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Example (cntd)

1. 0 6∈ U
2. U is not closed under addition:[

0
1

]
∈ U,

[
1
3

]
∈ U but

[
0
1

]
+

[
1
3

]
=

[
1
4

]
6∈ U

3. U is not closed under scalar multiplication[
0
1

]
∈ U, 2 ∈ R but 2

[
0
1

]
=

[
0
2

]
6∈ U

Note that:

• to prove just one of the above couterexamples suffices to show that U is
not a subspace

• it is sufficient to make them fail for particular choices

• a good place to start is checking whether 0 ∈ S . If not then S is not a
subspace 30
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Geometric interpretation:

u

w

(0, 0)
x

y

u

w

(0, 0)
x

y

 The line y = 2x + 1 is an affine subset, a „translation“ of a subspace
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Theorem
A non-empty subset W of a vector space is a subspace if and only if for all
u, v ∈W and all α, β ∈ R, we have αu + βv ∈W.
That is, W is closed under linear combination.
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Vector SpacesSummary

• Rank of a matrix and relation to number of solutions of a linear system

• General solutions of a linear system in vector notation

• Range, set of linear combinations of the columns of a matrix

• Vector spaces: properties

• Linear combination

• Subspaces: non-empty + closed under linear combination
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