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Null space of a Matrix is a Subspace Dimension

Theorem
For any m x n matrix A, N(A), ie, the solutions of Ax = 0, is a subspace of J
Rn

Proof
1. A0=0 = 0eN(A)

2. Suppose u,v € N(A), then u+v € N(A):
Alu+v)=Au+Av=0+0=0
3. Suppose u € N(A) and « € R, then au € N(A):

Alau) = A(au) = cAu=a0 =10 O

The set of solutions S to a general system Ax = b is not a subspace of R”
because 0 ¢ S
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Affine subsets Dimension

Definition (Affine subset)

If W is a subspace of a vector space V' and x € V/, then the set x + W
defined by

x+W={x+w|we W}

is said to be an affine subset of V.

The set of solutions S to a general system Ax = b is an affine subspace,
indeed recall that if xq is any solution of the system

S={xo+z|ze N(A)}
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Linear independence
. . Bases
Range of a Matrix is a Subspace Dimensien
Theorem
For any m x n matrix A, R(A) = {Ax | x € R"} is a subspace of R™ J
Proof

1. A0=0 = 0¢cR(A

2. Suppose u,v € R(A), then u+v € R(A):

3. Suppose u € R(A) and « € R, then au € R(A):
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Linear Span Bimension

o Ifv=ocqvi+aovs+...+agve and w = B1vy + Bovo + ... + Brvy,
then v +w and sv, s € R are also linear combinations of the vectors
Vi,Vo, ..., V.

e The set of all linear combinations of a given set of vectors of a vector
space V forms a subspace:
Definition (Linear span)

Let V be a vector space and vy, vo, ..., v, € V. The linear span of
X = {vi,va,...,vi} is the set of all linear combinations of the vectors
Vi, Vo, ...V, denoted by Lin(X), that is:

Lin({vl,v2, . ,Vk}) = {alvl + QoVo + ...+ Vi ‘ o1,Q00,...,0 € R}
Theorem
If X ={vi,va,..., vk} is a set of vectors of a vectors space V, then Lin(X)

is a subspace of V' and is also called the subspace spanned by X.
It is the smallest subspace containing the vectors vi,vo, ... V.
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Example
e Lin({v}) = {av | o € R} defines a line in R".
e Recall that a plane in R? has two equivalent representations:
ax+ by +cz=d and X=p+sv+itw, s teR
where v and w are non parallel.
— If d =0and p =0, then
{x|x=sv+tw,s, t,€ R} = Lin({v,w})

and hence a subspace of R".

— If d # 0, then the plane is not a subspace. It is an affine subset, a
translation of a subspace.

(recall that one can also show directly that a subset is a subspace or not)
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Spanning Sets of a Matrix Dimension

Definition (Column space)

If Aisan m x n matrix, and if a1, a,,...,a, denote the columns of A, then
the column space of A is

CS(A) = Lin({a1,az,...,ak})

and is a subspace of R™.

Definition (Row space)

If Aisan m x n matrix, and if @1, @»,..., @ denote the rows of A, then
the row space of A is

RS(A) = Lin({@1, @2,..., ax})

and is a subspace of R".

e R(A) = CS(A)

e If Alis an m x n matrix, then for any r € RS(A) and any x € N(A),
(r,x) = 0; that is, r and x are orthogonal. (hint: look at Ax = 0)
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Summary

We have seen:

Definition of vector space and subspace

Proofs that a given set is a vector space

Proofs that a given subset of a vector space is a subspace or not

Definition of linear span of set of vectors

Definition of row and column spaces of a matrix
CS(A) = R(A) and RS(A) L N(A)

10
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Linear Independence Dimension

Definition (Linear Independence)

Let V be a vector space and vi,vs,...,vi € V. Then vi,vo, ..., v, are
linearly independent (or form a linearly independent set) if and only if the
vector equation

a1V1 + oo + -+ agv =0
has the unique solution

()51:(12:'-':&;(:0

Definition (Linear Dependence)

Let V be a vector space and vi,va, ..., v, € V. Then vy, vs, ... v, are
linearly dependent (or form a linearly dependent set) if and only if there are
real numbers a1, an, - -+, a, not all zero, such that

a1vy + Vo + -+ agve =0




Example

In R2, the vectors

1 1
v = {2] and w= {_J
are linear independent. Indeed:
1 11 |0 a+ =0
SLEI RS R P

The homogeneous linear system has only the trivial solution, & = 0,3 = 0,
so linear independence.

Example
In R3, the following vectors are linearly dependent:
4

1 2
Vi = 2 ) Vo = 1 5 V3 = 5
3 5 11

Indeed: 2vy + vy +v3 =0
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Theorem

The set {vi,va,...,vi} C V is linearly dependent if and only if at least one
vector v; is a linear combination of the other vectors.

Proof

—

If {vi,va,... vk} are linearly dependent then

Qv + oV + -+ agv =0

has a solution with some «a; # 0, then:

a1 (6% Qi1 Ayl

Vi=——V] — —Vy — - — Vi1 —

Q; Q;j Q; i

which is a linear combination of the other vectors
P

If v; is a lin combination of the other vectors, eg,

vi=p1vi+ 4 Bicavier + Bivavier + o+ Brvk
then

Bivi+ -+ Bi—avie1 + Biy1 — Vit Vigr + o+ Bevk = 0 U

Vi+1*"'

15
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Corollary

Two vectors are linearly dependent if and only if at least one vector is a scalar
multiple of the other.

Example
1 2
V] = 2 s Vo = 1
3 5

are linearly independent




Theorem
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In a vector space V/, a non-empty set of vectors that contains the zero vector

is linearly dependent.

Proof:
{vi,va,..., vkt C V
{V17V27 e 7vk;0}

Ovy +0vy + ...+ 0v, + a0 =0, a0

17
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Uniqueness of linear combinations Dimension
Theorem
Ifvi,vo, ... vy are linearly independent vectors in V' and if

aiVvy + aVo + ...+ akvi = byvy + bovo + ...+ brvy

then

alzbl, 82:b2, ak:bk.

e |If a vector x can be expressed as a linear combination of linearly
independent vectors, then this can be done in only one way

X = C1V1 + CoVo + ...+ CikVi

18
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Testing for Linear Independence in R”  oimensien

For k vectors vi,vo, ... v, € R”

Q1V1 + QiaVo + - - - 4+ Qe Vg

is equivalent to

Ax
where A is the n x k matrix whose columns are the vectors v;,v5, ..., v, and
x = [ar,az,...,ak]":
Theorem
The vectors vi,va, ... v, in R" are linearly dependent if and only if the
linear system Ax = 0, where A is the matrix A = [vy vo -+ v|, has a

solution other than x = 0.
Equivalently, the vectors are linearly independent precisely when the only
solution to the system is x = 0.

If vectors are linearly dependent, then any solution x # 0,
x = [ag, . ..., ax]™ of Ax = 0 gives a non-trivial linear combination

Ax = aq1vy + aoVo + ...+ akve =0



are linearly dependent.
We solve Ax =0

R

A=12 -1 5

The general solution is
[t

-3t
t

and Ax = tv; — 3tvo +tvz3 =0

Hence, for t = 1 we have:

e
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Recall that Ax = 0 has precisely one solution x = 0 iff the n x k matrix is
row equiv. to a row echelon matrix with k leading ones, ie, iff rank(A) = k

Theorem

Let vi,va,...,vi € R". The set {vi,va,...,vi} is linearly independent iff
the n x k matrix A= [vy vo ... vi]| has rank k.

Theorem

The maximum size of a linearly independent set of vectors in R" is n.

e rank(A) < min{n, k} + rank(A) < n = when lin. indep. k < n.

o we exhibit an example that has exactly n independent vectors in R”
(there are infinite):

1 0 0

0 1 0
1= |.], e = |.]|, ey e, =

0 0 1

This is known as the standard basis of R".

21
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Example
(17 1] 2 0 2
0 2 1 0 5 . .
L=q1210 1ol 3] 1] |9 lin. dep. since5>n=4
| 0] [2] 1 0 1
DERLE
L= —01 ; ; lin. indep.
L O - _2_
F17 [17] [2]
0 2 1 . .
L3 = 1| lo] "3 lin. dep. since rank(A) =2
L - _2_ _1_
F17 [17 [2] 0
0 2 1 0 . .
Ly = 1l Lol |3l 1 lin. dep. since L3 C Ly
L0 2] |1] |0
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Theorem

If S ={vy,va,..., v} is a linearly independent set of vectors in a vector
space V and if w € V is not in the linear span of S, ie, w ¢ Lin(s), then the
set of vectors {v1,Vo,..., Vi, W} is linearly independent.

Proof:

a1V1 + aoVo + ...+ agvi + bw =0

If b# 0, then we solve for w and find that it is a linear combination:
contradiction, w ¢ Lin(S).

Hence b = 0 and ai1vy + apvo + ... + axve = 0 implies by hypothesis that all
«j are zero. [l

23
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Linear Independence and Span in R” Dimension

Let S = {vy,va,..., vk} be a set of vectors in R” and A be the n x k matrix
whose columns are the vectors from S.

e S spans R” if for any v € R” the linear system Ax = v is consistent.
This happens when rank(A) = n, hence k > n

e S is linearly independent iff the linear system Ax = 0 has a unique
solution. This happens when rank(A) = k, Hence k < n

Hence, to span R"” and to be linearly independent, the set S must have
exactly n vectors and the square matrix A must have det(A) # 0

Example

V] = , Vo = , V3 :30#0

w N
Tl =N
Il
= oA
>
Il
w N =
c1 =N
= 01 D

24
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Bases

Definition (Basis)

Let V be a vector space. Then the subset B = {vy,va,.

to be a basis for V if:

1. B is a linearly independent set of vectors, and
2. B spans V; thatis, V = Lin(B)

Vector Spaces (cntd)
Linear independence
Bases

Dimension

...V} of Vis said

Theorem

B = {vi,va,...,v,} is a basis of V' if and only if any v € V is a unique

linear combination of vi,vs,... v,

26



Example

{e1,es,...,e,} is the standard basis of R".

the vectors are linearly independent and for any x = [x1,x2,...,x,]7 € R”,
X = x1€1 + Xp€2 + ...+ Xp€,, ie,

Example

The set below is a basis of R?:

s={l[4))

e any vector x € R? can be written as a linear combination of vectors in S.

e any vector b is a linear combination of the two vectors in S
~+ Ax = b is consistent for any b.

e S spans R? and is linearly independent
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Example

Find a basis of the subspace of R3 given by

X
W = y| | x+y—-3z=0
z
X X 1 0
x=|y| = —x+3z| =x|-1| +2z 1|3 = XV + zZW, VX,ZER
z z 0 1

The set {v,w} spans W. The set is also independent:

av+pfw=0 = a=0,6=0

28



Extension of the main theorem

Theorem

Vector Spaces (cntd)
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Dimension

If A'is an n x n matrix, then the following statements are equivalent:

1
2
3
4.
5
6
8

A s invertible

. Ax = b has a unique solution for any b € R

. Ax = 0 has only the trivial solution, x = 0

the reduced row echelon form of A is |.

. |AI#£0
. The rank of A is n

The column vectors of A are a basis of R"

. The rows of A (written as vectors) are a basis of R"

(The last statement derives from |AT| = |A.)
Hence, simply calculating the determinant can inform on all the above facts.

29
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Example
1 2 4
V] = 2 , Vo = 1 , V3 = 5
3 5 11

This set is linearly dependent since v3 = 2vy + vo
so v3 € Lin({v1,v2}) and Lin({vy,v2}) = Lin({v1, vz, v3}).
The linear span of {vy, v} in R® is a plane:

X 1 2
x=|y| =svi+tvo=5|2| +t|1
z 3 5

The vector x belongs to the subspace iff it can be expressed as a linear
combination of vy, vy, that is, if v, vs, x are linearly dependent or:

|A] = = [Al=7x+y—-3z=0

w N =
1= N
N < X
Il
(e)
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Coordinates Boes o

Theorem
If V is a vector space, then a smallest spanning set is a basis of V.

Definition (Coordinates)

If S ={vi,va,...,v,} is a basis of a vector space V/, then any vector v € V
can be expressed uniquely as v = ajvy + apvo + ... + a,v, then the real
numbers o, ao, ..., «, are the coordinates of v with respect to the basis S.

We use the notation

o
s
[v]s =

(,Y,,S

to denote the coordinate vector of v in the basis S.

31



Example

Consider the two basis of R?:

= {[s] B}

[V]B N |:_25:| B

In the standard basis the coordinates of v are precisely the components of the

vector v.
In the basis S, they are such that

o=l A= 15

|
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= {l [}

s =],

32
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Theorem

Let V' be a vector space with a basis
B ={vi,va,...,vp}

of n vectors. Then any set of n+ 1 vectors is linearly dependent.

Proof:

o Let S={wy,wo,...,w, 1} be any set of n+ 1 vectors in V.
e Since B is a basis, then

W; = a1;V1 + azjVo + ...+ aniVn
e linear combination of vectors in S:
biwy + bowy + - - 4+ bpyiwpp1 =0

Substituting:

bi(a1jvi + axiva + ... + anivp) + bo(arivy + agiva + ... + apivp) + - -
+ bpy1(a1ivi + axivo + ...+ apiv,) =0

34
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bl(allvl —+ dooVo + ...+ anlvn) —+ b2(212V1 + dooVo 4+ ...+ a,,zv,,) —+ .
+ bn+1(al7n+lvl + azxprive + ...+ an,n+lvn) =0

collecting the terms that multiply the vectors:

(braii+braio+- - +bpy131,nr1)Vi+(b1az1+boaz o+ ~+bpy182 py1)Vot- -

+ (blan,l + b2an,2 + -+ bn+13n,n+1)vn =0
this gives us the system

brai1 + boaio + -+ bpy131,0+41 =0
biaz1+ brazo+ -+ bpy1azpe1 =0

biani + brans + -+ + bpr1an 1 =0

Homogeneous system of n -+ 1 variables (b, ..., b,1) in n equations.
Hence at least one free variable. Hence

biwi + bowy + -+ - + bpyiwpy; =0

has non trivial solutions and the set S is linearly dependent.

35



Dimension
It follows that:
Theorem

Let a vector space V' have a finite basis consisting of r vectors. Then any
basis of V' consists of exactly r vectors.

Definition (Dimension)

The number of k vectors in a finite basis of a vector space V is the
dimension of V' and is denoted by dim(V/).
The vector space V = {0} is defined to have dimension 0.

a plane in R? is a two-dimensional subspace

a line in R” is a one-dimensional subspace

a hyperplane in R" is an (n — 1)-dimensional subspace of R"”

the vector space F of real functions is an infinite-dimensional vector
space

the vector space of real-valued sequences is an infinite-dimensional
vector space.

36
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Example
The plane W in R3

W={x|x+y—3z=0}
has a basis consisting of the vectors v; = [1,2,1]7 and v» = [3,0,1]".

Let v3 be any vector ¢ W, eg, v3 = [1,0,0]". Then the set S = {vy,vo,v3}
is a basis of R3.

38
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Basis and Dimension in R” Dimension

If we are given k vectors vi,vo, ..., v, in R”, how can we find a basis for
Lin({vi,va2,...,vk})?

We can use matrices.
Three subspaces associated with an m x n matrix A:

RS(A) row space: linear span of the rows of A
subspace of R”

N(A) null space: set of all solutions of Ax =0
subspace of R”

R(A) range or column space: linear span of column vectors;
subspace of R™

To find a basis for these we put the matrix A in reduced row echelon form.

39



Example

1 2112

0 1214

A= -13919

0 1201

1

2

RS(A) = Lin 1

1

2

N(A) = {x | Ax = 0}

R(A) = CS(A) = Lin

2R NRO
= ONH O

=W =N
N ODN =
O R =

Vector Spaces (cntd)
Linear independence
Bases

Dimension

subspace inR®

subspace inR®

subspace inR*

= O WwN




Vector Spaces (cntd)
Linear independence

Bases
Dimension

Example (cntd)

-3

A==

O O O+
O O+~ O
O O N
o= OO
O W

RS(A) = RS(R) because row operations are linear combinations of the
vectors. Hence a basis for RS(A) is given by the non-zero rows:

w
_ ON B~ O
w k= O oo

it is a three-dimensional subspace of R®

41



Example (cntd)

O O O
O O~ O
O O N
o= OO
O W

Basis for NV(A). We write the general solution for Ax = 0.

X1 3s+ 3t 3 3
Xo —2s—t -2 -1
x3| = s =s| 1| +4+t| 0| =svy+ tvy,
X4 —3t 0 —3
X5 t 0 1

{v1,Vvo} is a basis since also linearly independent
It is a two-dimensional subspace of R®

Vector Spaces (cntd)
Linear independence
Bases

Dimension

s,teR
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Example (cntd)

oo or
o O = O
O O N
o = OO

R(A) = CS(A). operations on rows, but vectors are the columns. However
the columns that have a leading one are columns that are linearly
independent, because one leading one is in every column.

The basis is {a1, a2, a4}, ie, the three columns of the starting matrix

Any other vector added would be dependent

It is a three-dimensional subspace of R*

Hence, for our set of k vectors vi,vs, ..., v, in R” we can either create an
k x n and work with the row space or create an n x k and work with the
column space.
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Definition (Rank and nullity)
The rank of a matrix A is The

rank(A) = dim(R(A))
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nullity of a matrix A is

nullity(A) = dim(N(A))

Although subspaces of possibly different Euclidean spaces:

Theorem

If A is an m X n matrix, then

dim(RS(A)) = dim(CS(A)) = rank(A)

Theorem (Rank-nullity theorem)

For an m x n matrix A

rank(A) + nullity(A) = n

(dim(R(A)) + dim(N(A)) = n)

a4



S u m m a ry Dimension

Linear dependence and independence

Determine linear dependency of a set of vertices, ie, find non-trivial
lin. combination that equal zero

Basis
Find a basis for a linear space

Find a basis for the null space, range and row space of a matrix (from its
reduced echelon form)

Dimension (finite, infinite)

Rank-nullity theorem
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