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Resume

e Linear transformations and proofs that a given mapping is linear

e range and null space, and rank and nullity of a transformation,
rank-nullity theorem

e two-way relationship between matrices and linear transformations
e change from standard to arbitrary basis

e change of basis from B to B’
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1. More on Coordinate Change



Coordinate Change
Diagonalization

Change of Basis for a Lin. Transf. Applications

We saw how to find A for a transformation T : R” — R™ using standard

basis in both R” and R™. Now: is there a matrix that represents 7 wrt two
arbitrary bases B and B’?7

Theorem

Let T : R" — R™ be a linear transformation

and B = {vy,va,...,v,} and B' = {v{, v}, ... v]} be bases of R" and R™.
Then for all x € R", [T(x)]s = M[x]s

where M = Ag /) is the m x n matrix with the ith column equal to
[T(vi)]s/, the coordinate vector of T(v;) wrt the basis B'.

Proof:
change B to standard x=Pg"[x]g ¥xe€R"

1
perform linear transformation T(x) = Ax = APZ*"[x]|g
in standard coordinates
1
change to basis B’ ulgr = (P3*") lu YueR™
[T(x)]s = (Pg*™) " APE*"[x]5
M = (Pglxm)—lAngn
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How is M done?

o Pg=1[vi vy ... v

APg = AJvy vo ... v, = [Avy Avy ... Av,]
o Av; = T(v;): APg =[T(v1) T(v2) ... T(v,)]

M = PglAPg = Pzl = [Pg! T(v1) Pgt T(va) ... PgtT(v,)]

M =[[T(vi)le [T(v2)le ... [T(va)le]

Hence, if we change the basis from the standard basis of R” and R™ the
matrix representation of T changes
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S i m i Ia rity Applications

Particular case m = n:

Theorem

Let T : R"™ — R" be a linear transformation

and B = {x1,x2,...,%,} be a basis R".

Let A be the matrix corresponding to T in standard coordinates: T (x) = Ax.
Let

P= [xl Xy .- xn}
be the matrix whose columns are the vectors of B. Then for all x € R",

[T(x)]g = P *AP[x]s

Or, the matrix Ajg g = P~LAP performs the same linear transformation as
the matrix A but expressed it in terms of the basis B.
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Sim i |arity Applications

Definition
A square matrix C is similar (represent the same linear transformation) to the
matrix A if there is an invertible matrix P such that

C=P'AP.

Similarity defines an equivalence relation:
o (reflexive) a matrix A is similar to itself

o (symmetric) if C is similar to A, then A is similar to C
C=P AP, A=Q7!CQ, Q=P!

e (transitive) if D is similar to C, and C to A, then D is similar to A



Example
W X - % ’ X

e x? + y? = 1 circle in standard form

e x? + 4y? = 4 ellipse in standard form
e 5x% +5y? — 6xy = 2 7?7 Try rotating /4 anticlockwise

cosf —sinf X -1
Ar=1a) )| =2 =P
Sin COS ﬁ ﬁ

11
v Pie =[] - [f 7Y
Y V2 V2

X?24+4y2=1
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Example

Let 7 :R2 — R2:

(1X[) = | % + 3y
y|)  |-x+5y
What is its effect on the xy-plane?
Let's change the basis to

o=t = {[1]- ]}

Find the matrix of T in this basis:

e C =P 1AP, A matrix of T in standard basis, P is transition matrix
from B to standard

e [T 3 A1
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Example (cntd)

e the B coordinates of the B basis vectors are

)

e so in B coordinates T is a stretch in the direction v; by 4 and in dir. v,

by 2:
0[],

e The effect of T is however the same no matter what basis, only the
matrices change! So also in the standard coordinates we must have:

[Twle = |g 3

Avi = 4vy Avy = 2vp
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Resume

e Matrix representation of a transformation with respect to two given basis

e Similarity of square matrices
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Outline

2. Diagonalization

Coordinate Change
Diagonalization
Applications
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Eigenvalues and Eigenvectors Rppleations

(All matrices from now on are square n x n matrices and all vectors in R")

Definition
Let A be a square matrix.

e The number ) is said to be an eigenvalue of A if for some non-zero
vector x,

Ax = \x

e Any non-zero vector x for which this equation holds is called
eigenvector for eigenvalue \ or
eigenvector of A corresponding to eigenvalue \

14
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Finding Eigenvalues Applications

Determine solutions to the matrix equation Ax = \x

Let's put it in standard form, using Ax = \/x:

(A—A)x=0

Bx = 0 has solutions other than x = 0 precisely when det(B) = 0.

e hence we want det(A — \/) = 0:

Definition (Charachterisitc polynomial)

The polynomial |A — Al is called the characteristic polynomial of A, and
the equation |A — \/| = 0 is called the characteristic equation of A.

15
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Example

7 15
Sl i

7 —15 10 7-) —15
A_/\'_[z —4}_%0 1}_[ 2 —4—)\]

The characteristic polynomial is

7—\ =15
|A— M| ’ a4
=(7T-=N)(-4-X)+30
=A2_3)\+2

The characteristic equation is
M3\ +2=A-1)(A—-2)=0

hence 1 and 2 are the only eigenvalues of A

16
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Finding Eigenvectors Applications
¢ Find non-trivial solution to (A — A/)x = 0 corresponding to A

e zero vectors are not eigenvectors!

Example
7 —15
A=l
Eigenvector for A = 1:
6 —15 RREF 1 -3 5
R I

Eigenvector for \ = 2:

5 —15 RREF 1 -3 3
A2/_{2 —6}%”'%{0 O} v_t{],teR




Example

40 4
A= 104 4
448

The characteristic equation is

|A— Al

4 4 8-

=@ -XN((-4-X)(B8—=X)—16)+4(—-4(4—N)
=4 -N((-4-N)B—=X)—16)—16(4 —\)

=4 -N((—4—-X2N(B—X)—16—16)

= (4 -2\ —-12)

hence the eigenvalues are 4,0, 12.
Eigenvector for A = 4, solve (A — 4/)x = 0:

4 4 8-—4

4—4 0 4 - 110 -1
A—4] = 0 4-4 4 —- -~ =001 v=t|1
000

Coordinate Change
Diagonalization
Applications




Coordinate Change
Diagonalization
. oeonal

Example

-3 -1 -2
A=11 -1 1
1 1 0

The characteristic equation is
-3-x -1 -2
A-MN| =] 1 -1-x 1
1 1 -
=(-3-N)N+A-1)+(=A—1)—2(2+ )
=—(A3+4X2 +5)1+2)
if we discover that —1 is a solution then (\ + 1) is a factor of the polynomial:
—~(A+1)(arN? + bA +¢)
from which we can find a=1,c =2,b =3 and

A+ DA+2)A+1) = —(A+1)*(A+2)

the eigenvalue —1 has multiplicity 2
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Eigenspaces o ok

e The set of eigenvectors corresponding to the eigenvalue \ together with
the zero vector 0, is a subspace of R”".
because it corresponds with null space N(A — /)

Definition (Eigenspace)

If Ais an n x n matrix and A is an eigenvalue of A, then the eigenspace of
the eigenvalue A is the nullspace N(A — A/) of R”.

e the set S = {x | Ax = Ax} is always a subspace but only if A is an
eigenvalue then dim(S) > 1.

20
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Eigenvalues and the Matrix Applications
Links between eigenvalues and properties of the matrix

e let A be an nx n matrix, then the characteristic polynomial has degree n:

P()\) = ‘A — )\/‘ = (—1)"(/\" + anfl)\"*l 4+t 30)

e in terms of eigenvalues A1, Ao, .. ., A, the characteristic polynomial is:

PN = A= M| = (=1)"(A = A)(A = Xa) - (A = Ay)

Theorem

The determinant of an n x n matrix A is equal to the product of its
eigenvalues.

Proof: if A = 0 in the first point above, then

,D(O) = |A| = (—1)”20 = (—1)”(—1)")\1A2 ce )\,, = )\1)\2 ce )\n

21



Coordinate Change
Diagonalization
Applications

e The trace of a square matrix A is the sum of the entries on its main
diagonal.

Theorem J

The trace of an n x n matrix is equal to the sum of its eigenvalues.

Proof:

A= Xl| = (=1)"(\"+ 2,1 A"+ + a)
(=1)"(A = A1) (A = A2) - (A = An)

the proof follows by comparing the coefficients of (—\)"~*

22
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Diagonalization Applications
Recall: Square matrices are similar if there is an invertible matrix P such that
P~IAP = M.

Definition (Diagonalizable matrix)

The matrix A is diagonalizable if it is similar to a diagonal matrix; that is,
if there is a diagonal matrix D and an invertible matrix P such that
P~1AP =D

Example
7 —15
A-[3 2]
153 1 |-1 3
S P

PlAPD{lﬂ

How was such a matrix P found?

When a matrix is diagonalizable?

23
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Diagonalization
General Method Aeheasions

e Let's assume A is diagonalizable, then P~*AP = D where

D:diag(Alv)Qv"';)\n): .
00 -0
0 0 --- A

n

e AP = PD
AP:A[vl vn] = [Avl Av,,]

A O 0
0 X 0

PD = [vl v,,} 0 0 0 = [)\1V1 )\,,v,,}
0 0 An

e Hence: Avy = A\1vy, Avo = \ovo, --- Av, = \hv,

24
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e since P! exists then none of the above Av; = \;v; has 0 as a solution
or else P would have a zero column.

e this is equivalent to \; and v; are eigenvalues and eigenvectors and that
they are linearly independent.

e the converse is also true: P! is invertible and Av = \v implies that
P~'AP =P 'PD=D

Theorem

An n x n matrix A is diagonalizable if and only if it has n linearly independent
eigenvectors.

v

Theorem

An n x n matrix A is diagonalizable if and only if there is a basis of R"

consisting only of eigenvectors of A.

25



Example

7 -15
Sl i

and 1 and 2 are the eigenvalues with eigenvectors:

ol ol

P—[v va] = B ﬂ

Coordinate Change
Diagonalization
Applications
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Example
40 4
A= 10 4 4
448

has eigenvalues 0,4, 12 and corresponding eigenvectors:

-1 —1 1
Vi = 1 5 vo = | —1 , V3 = 1
0 1 2
-1 —1 1] [4 0 07
P=11 -11 D=100 0
L0 1 2] 0 0 12]

We can choose any order, provided we are consistent:

1 —1 1] 000
P=|-1 11 D=04 0
1 0 2 00 12

27
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Geometrical Interpretation Applications

e Let's look at A as the matrix representing a linear transformation
T = Ta in standard coordinates, ie, T(x) = Ax.

e let’s assume A has a set of linearly independent vectors
B = {vi,va,...,v,} corresponding to the eigenvalues A1, Ao, ..., A,
then B is a basis of R".

e what is the matrix representing T wrt the basis B?
A[B,B] = pPlap

where P = [vi vo -+ v,| (check earlier theorem today)

e hence, the matrices A and Az p) are similar, they represent the same
linear transformation:
e A in the standard basis

o A, g in the basis B of eigenvectors of A

o Agg) = [[T(v1)lg [T(v2)lz -+ [T(vn)]g] ~ for those vectors in
particular T(v;) = Av; = A;v; hence diagonal matrix ~ Az g = D
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e What does this tell us about the linear transformation 747

by
by
For any x € R" [x]s =
bn] g
its image in T is easy to calculate in B coordinates:
A 0 - 0] [b A1by
(7] 0 X -+ 0] | b2 Aobo
X)|B = . = .
00 0 ;
0 0 )\n bn B /\nbn B

e it is a stretch in the direction of the eigenvector v; by a factor \;!

o the line x = tv;, t € R is fixed by the linear transformation T in the
sense that every point on the line is stretched to another point on the
same line.



Coordinate Change

S i m i Ia r M at riCeS Diagonalization

Applications
Geometric interpretation

o Let Aand B = P 1AP, ie, be similar.

e geometrically: T, is a linear transformation in standard coordinates
Tg is the same linear transformation T in coordinates wrt the basis
given by the columns of P.

e we have seen that T has the intrinsic property of fixed lines and
stretches. This property does not depend on the coordinate system used
to express the vectors. Hence:

Theorem

Similar matrices have the same eigenvalues, and the same corresponding
eigenvectors expressed in coordinates with respect to different bases.

Algebraically:
e A and B have same polynomial and hence eigenvalues

[B—X| =|P7tAP — Xl| = |P~'AP — AP~1IP|
= |PTHA= AP =[PTH|A = M||P]
— A=)\
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e P transition matrix from the basis S to the standard coords to coords

v = P[v]s [v]s = P~ v

e Using Av = \v:

B[V]S = PflAP[V]S
=P 1Av
=P 1\
= AP v
= Alvs

hence [v]s is eigenvector of B corresponding to eigenvalue A

31
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Diagonalizable matrices Applications

Example

4 1
-4
has characteristic polynomial A\ — 6\ + 9 = (\ — 3).
The eigenvectors are:

Rl

hence any two eigenvectors are scalar multiple of each others and are linearly
dependent.

The matrix A is therefore not diagonalizable.

32
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Example

a0 ]

has characteristic equation A\? + 1 and hence it has no real eigenvalues.

33
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Theorem

If an n x n matrix A has n different eigenvalues then (it has a set of n linearly
independent eigenvectors) is diagonalizable.

e Proof by contradiction

e 1 lin indep. is necessary condition but n different eigenvalues not.

Example

-1
2

3
A= 10
1 -1

1
0
3

the characteristic polynomial is —(\ — 2)?(\ — 4). Hence 2 has multiplicity 2.
Can we find two corresponding linearly independent vectors?

34
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Example (cntd)

1 -11 - 1 -11
(A-2/)=10 0 0| - -~ — |0 0O O
1 -11 0 0O
1 -1
x=s|1|+t| 0| =svy+tv, s, teR
0 1

the two vectors are lin. indep.

-1 -1 1 10 -1 1
(A-an=1]0 —2 0| =" 5 lo1 0 vs= |0
1 -1 -1 00 0 1
11 -1 400
P=101 0 PAP=1020
101 002
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Example
-3 -1 -2
A=11 -1 1
1 1 0

Eigenvalue \; = —1 has multiplicity 2; A, = —2.

-2 -1 =2
A+l=|1 0 1
11 1

RREF Lot
.- =010
000
The rank is 2.
The null space (A + /) therefore has dimension 1 (rank-nullity theorem).
We find only one linearly independent vector: x = [~1,0,1]".
Hence the matrix A cannot be diagonalized.

36
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Multiplicity
Definition (Algebraic and geometric multiplicity)
An eigenvalue \g of a matrix A has

e algebraic multiplicity k if k is the largest integer such that (A — )~ is a
factor of the characteristic polynomial

e geometric multiplicity k if k is the dimension of the eigenspace of )\g, ie,
dim(N(A — Xol))

Theorem

For any eigenvalue of a square matrix, the geometric multiplicity is no more
than the algebraic multiplicity

Theorem

A matrix is diagonalizable if and only if all its eigenvalues are real numbers

and, for each eigenvalue, its geometric multiplicity equals the algebraic
multiplicity.

37



Diagonalization

Summary

o Characteristic polynomial and characteristic equation of a matrix
e eigenvalues, eigenvectors, diagonalization

e finding eigenvalues and eigenvectors

e eigenspace

e eigenvalues are related to determinant and trace of a matrix

e diagonalize a diagonalizable matrix

e conditions for digonalizability

e diagonalization as a change of basis, similarity

e geometric effect of linear transformation via diagonalization

38



Outline

3. Applications

Coordinate Change
Diagonalization
Applications
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Uses of Diagonalization

find powers of matrices

e solving systems of simultaneous linear difference equations

Markov chains

systems of differential equations

Coordinate Change
Diagonalization
Applications
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Powers of Matrices Amietion

A= AAA--- A
—_——

n times

If we can write: P~1AP = D then A = PDP~1!
A" = AAA--- A
—_—

n times

= (PDP~)(PDP~Y)(PDP~Y)-..(PDP™1)

n times
= PD(P~1P)D(P~1P)D(P~1P)--- DP~!
=PDDD---DP!
%,—/
n times
= PD"pP~1
then closed formula to calculate the power of a matrix.

41



Difference equations Areieasions

o A difference equation is an equation linking terms of a sequence to
previous terms, eg:

Xt4+1 — 5Xt -1

is a first order difference equation.

e a first order difference equation can be fully determined if we know the
first term of the sequence (initial condition)

e a solution is an expression of the terms x;

Xt4+1 = aXg — Xt = atXO

42
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System of Difference equations Applications

Suppose the sequences x; and y; are related as follows:
X0=17y0:1f0rt20

Xer1 =[x — 15y;
Yer1 = 2x¢ — 4y,

Coupled system of difference equations.
Let then x;,; = Ax; and 0 = [1,1]" and
— | 7 15
Xt = _
' {yt} A= [2 —4}
Then:
X1 = AXO

Xy = AX1 = A(AXO) = A2X0
X3 = AX2 = A(A2X0) = A3X0

x; = Afxg

43



Markov Chains gt

e Suppose two supermarkets compete for customers in a region with
20000 shoppers.

e Assume no shopper goes to both supermarkets in a week.

e The table gives the probability that a shopper will change from one to
another supermarket:
From A From B From none

To A 0.70 0.15 0.30
To B 0.20 0.80 0.20
To none 0.10 0.05 0.50

(note that probabilities in the columns add up to 1)

e Suppose that at the end of week 0 it is known that 10000 went to A,
8000 to B and 2000 to none.

e Can we predict the number of shoppers at each supermarket in any
future week t? And the long-term distribution?

a4



Applications
Formulation as a system of difference equations:

o Let x; be the percentage of shoppers going in the two supermarkets or
none

then we have the difference equation:
Xt = Ax¢ 1
0.70 0.15 0.30

A= 10.20 0.80 0.20{ , X; = [xt Vi zt]
0.10 0.05 0.50

a Markov chain (or process) is a closed system of a fixed population
distributed into n diffrerent states, transitioning between the states
during specific time intervals.

The transition probabilities are known in a transition matrix A
(coefficients all non-negative + sum of entries in the columns is 1)

e state vector x;, entries sum to 1.
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A solution is given by (assuming A is diagonalizable):

x; = A'xg = (PD'P~")xo

T .
let xg = Pzg and zg = P~ 1xg = [bl by - bn] be the representation
of xg in the basis of eigenvectors, then:

Xt = PD'P1xg = byAivy + boAbvo + -+« 4+ byAfv,

Xt = bl(l)tvl + b2(0.6)tV2 + -4 b,,(0.4)tv,,

lim; ,oc 1" =1, lim;_o 0.6" = 0 hence the long-term distribution is
3 0.375
1 0.125

Th.: if A is the transition matrix of a regular Markov chain, then A = 1
is an eigenvalue of multiplicity 1 and all other eigenvalues satisfy |\| < 1

46
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