
DM554

Linear and Integer Programming

LU Factorization

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Based on slides by Lieven Vandenberghe, UCLA]



Operation Count
LU Factorization
Other TopicsOutline

1. Operation Count

2. LU Factorization

3. Other Topics

2



Operation Count
LU Factorization
Other TopicsOutline

1. Operation Count

2. LU Factorization

3. Other Topics

3



Operation Count
LU Factorization
Other TopicsComplexity of matrix algorithms

• flop counts

• vector-vector operations

• matrix-vector product

• matrix-matrix product

4



Operation Count
LU Factorization
Other TopicsFlop counts

floating-point operation (flop)

• one floating-point addition, subtraction, multiplication, or division

• other common definition: one multiplication followed by one addition

flop counts of matrix algorithm

• total number of flops is typically a polynomial of the problem dimensions

• usually simplified by ignoring lower-order terms

applications

• a simple, machine-independent measure of algorithm complexity

• not an accurate predictor of computation time on modern computers

5



Operation Count
LU Factorization
Other TopicsVector-vector operations

• inner product of two n-vectors

xTy = x1y1 + x2y2 + . . .+ xnyn

n multiplications and n − 1 additions = 2n flops (2n if n� 1)

• addition or subtraction of n-vectors: n flops

• scalar multiplication of n-vector : n flops

6



Operation Count
LU Factorization
Other TopicsMatrix-vector product

matrix-vector product with m × n-matrix A:

y = Ax

m elements in y ; each element requires an inner product of length n:

(2n − 1)m flops

approximately 2mn for large n special cases

• m = n, A diagonal: n flops

• m = n, A lower triangular: n(n + 1) flops

• A very sparse (lots of zero coefficients): #flops � 2mn

7



Operation Count
LU Factorization
Other TopicsMatrix-matrix product

product of m × n-matrix A and n × p-matrix B:

C = AB

mp elements in C ; each element requires an inner product of length n:

mp(2n − 1)flops

approximately 2mnp for large n.

8



Operation Count
LU Factorization
Other TopicsOutline

1. Operation Count

2. LU Factorization

3. Other Topics

9



Operation Count
LU Factorization
Other TopicsOverview

• factor-solve method

• LU factorization

• solving Ax = b with A nonsingular

• the inverse of a nonsingular matrix

• LU factorization algorithm

• effect of rounding error

• sparse LU factorization

10



Operation Count
LU Factorization
Other TopicsDefinitions

Definition (Triangular Matrices)

An n × n matrix is said to be upper triangular if aij = 0 for i > j and lower
triangular if aij = 0 for i < j . Also A is said to be triangular if it is either
upper triangular or lower triangular.

Example:


3 0 0
2 1 0
1 4 3






3 5 1
0 1 3
0 0 7




Definition (Diagonal Matrices)

An n × n matrix is diagonal if aij = 0 whenever i 6= j .

Example:


1 0 0
0 1 0
0 0 3




11



Multiple right-hand sides

two equations with the same matrix but different right-hand sides

Ax = b, Ax̃ = b̃

• factor A once (f flops)

• solve with right-hand side b (s flops)

• solve with right-hand side b̃ (s flops)

cost: f + 2s instead of 2(f + s) if we solve second equation from scratch

conclusion: if f ≫ s, we can solve the two equations at the cost of one

LU factorization 7-4



LU factorization

LU factorization without pivoting

A = LU

• L unit lower triangular, U upper triangular

• does not always exist (even if A is nonsingular)

LU factorization (with row pivoting)

A = PLU

• P permutation matrix, L unit lower triangular, U upper triangular

• exists if and only if A is nonsingular (see later)

cost: (2/3)n3 if A has order n

LU factorization 7-5



Solving linear equations by LU factorization

solve Ax = b with A nonsingular of order n

factor-solve method using LU factorization

1. factor A as A = PLU ((2/3)n3 flops)

2. solve (PLU)x = b in three steps

• permutation: z1 = PT b (0 flops)
• forward substitution: solve Lz2 = z1 (n2 flops)
• back substitution: solve Ux = z2 (n2 flops)

total cost: (2/3)n3 + 2n2 flops, or roughly (2/3)n3

this is the standard method for solving Ax = b

LU factorization 7-6



Multiple right-hand sides

two equations with the same matrix A (nonsingular and n× n):

Ax = b, Ax̃ = b̃

• factor A once

• forward/back substitution to get x

• forward/back substitution to get x̃

cost: (2/3)n3 + 4n2 or roughly (2/3)n3

exercise: propose an efficient method for solving

Ax = b, AT x̃ = b̃

LU factorization 7-7



Inverse of a nonsingular matrix

suppose A is nonsingular of order n, with LU factorization

A = PLU

• inverse from LU factorization

A−1 = (PLU)−1 = U−1L−1PT

• gives interpretation of solve step: evaluate

x = A−1b = U−1L−1PT b

in three steps

z1 = PT b, z2 = L−1z1, x = U−1z2

LU factorization 7-8



Computing the inverse

solve AX = I by solving n equations

AX1 = e1, AX2 = e2, . . . , AXn = en

Xi is the ith column of X; ei is the ith unit vector of size n

• one LU factorization of A: 2n3/3 flops

• n solve steps: 2n3 flops

total: (8/3)n3 flops

conclusion: do not solve Ax = b by multiplying A−1 with b

LU factorization 7-9



LU factorization without pivoting

partition A, L, U as block matrices:

A =

[
a11 A12

A21 A22

]
, L =

[
1 0

L21 L22

]
, U =

[
u11 U12

0 U22

]

• a11 and u11 are scalars

• L22 unit lower-triangular, U22 upper triangular of order n− 1

determine L and U from A = LU , i.e.,

[
a11 A12

A21 A22

]
=

[
1 0

L21 L22

] [
u11 U12

0 U22

]

=

[
u11 U12

u11L21 L21U12 + L22U22

]

LU factorization 7-10



recursive algorithm:

• determine first row of U and first column of L

u11 = a11, U12 = A12, L21 = (1/a11)A21

• factor the (n− 1)× (n− 1)-matrix A22 − L21U12 as

A22 − L21U12 = L22U22

this is an LU factorization (without pivoting) of order n− 1

cost: (2/3)n3 flops (no proof)

LU factorization 7-11



Example

LU factorization (without pivoting) of

A =




8 2 9
4 9 4
6 7 9




write as A = LU with L unit lower triangular, U upper triangular

A =




8 2 9
4 9 4
6 7 9


 =




1 0 0
l21 1 0
l31 l32 1






u11 u12 u13

0 u22 u23

0 0 u33




LU factorization 7-12



• first row of U , first column of L:



8 2 9
4 9 4
6 7 9


 =




1 0 0
1/2 1 0
3/4 l32 1






8 2 9
0 u22 u23

0 0 u33




• second row of U , second column of L:
[

9 4
7 9

]
−

[
1/2
3/4

] [
2 9

]
=

[
1 0
l32 1

] [
u22 u23

0 u33

]

[
8 −1/2

11/2 9/4

]
=

[
1 0

11/16 1

] [
8 −1/2
0 u33

]

• third row of U : u33 = 9/4 + 11/32 = 83/32

conclusion:

A =




8 2 9
4 9 4
6 7 9


 =




1 0 0
1/2 1 0
3/4 11/16 1






8 2 9
0 8 −1/2
0 0 83/32




LU factorization 7-13



Not every nonsingular A can be factored as A = LU

A =




1 0 0
0 0 2
0 1 −1


 =




1 0 0
l21 1 0
l31 l32 1






u11 u12 u13

0 u22 u23

0 0 u33




• first row of U , first column of L:




1 0 0
0 0 2
0 1 −1


 =




1 0 0
0 1 0
0 l32 1






1 0 0
0 u22 u23

0 0 u33




• second row of U , second column of L:

[
0 2
1 −1

]
=

[
1 0
l32 1

] [
u22 u23

0 u33

]

u22 = 0, u23 = 2, l32 · 0 = 1 ?

LU factorization 7-14



LU factorization (with row pivoting)

if A is n× n and nonsingular, then it can be factored as

A = PLU

P is a permutation matrix, L is unit lower triangular, U is upper triangular

• not unique; there may be several possible choices for P , L, U

• interpretation: permute the rows of A and factor PTA as PTA = LU

• also known as Gaussian elimination with partial pivoting (GEPP)

• cost: (2/3)n3 flops

we will skip the details of calculating P , L, U

LU factorization 7-15



Example




0 5 5
2 9 0
6 8 8


 =




0 0 1
0 1 0
1 0 0






1 0 0
1/3 1 0
0 15/19 1






6 8 8
0 19/3 −8/3
0 0 135/19




the factorization is not unique; the same matrix can be factored as




0 5 5
2 9 0
6 8 8


 =




0 1 0
1 0 0
0 0 1






1 0 0
0 1 0
3 −19/5 1






2 9 0
0 5 5
0 0 27




LU factorization 7-16



Effect of rounding error

[
10−5 1
1 1

] [
x1

x2

]
=

[
1
0

]

exact solution:

x1 =
−1

1− 10−5
, x2 =

1

1− 10−5

let us solve the equations using LU factorization, rounding intermediate
results to 4 significant decimal digits

we will do this for the two possible permutation matrices:

P =

[
1 0
0 1

]
or P =

[
0 1
1 0

]

LU factorization 7-17



first choice of P : P = I (no pivoting)

[
10−5 1
1 1

]
=

[
1 0
105 1

] [
10−5 1
0 1− 105

]

L, U rounded to 4 decimal significant digits

L =

[
1 0
105 1

]
, U =

[
10−5 1
0 −105

]

forward substitution
[

1 0
105 1

] [
z1
z2

]
=

[
1
0

]
=⇒ z1 = 1, z2 = −105

back substitution
[

10−5 1
0 −105

] [
x1

x2

]
=

[
1

−105

]
=⇒ x1 = 0, x2 = 1

error in x1 is 100%

LU factorization 7-18



second choice of P : interchange rows

[
1 1

10−5 1

]
=

[
1 0

10−5 1

] [
1 1
0 1− 10−5

]

L, U rounded to 4 decimal significant digits

L =

[
1 0

10−5 1

]
, U =

[
1 1
0 1

]

forward substitution
[

1 0
10−5 1

] [
z1
z2

]
=

[
0
1

]
=⇒ z1 = 0, z2 = 1

backward substitution
[

1 1
0 1

] [
x1

x2

]
=

[
0
1

]
=⇒ x1 = −1, x2 = 1

error in x1, x2 is about 10−5

LU factorization 7-19



conclusion:

• for some choices of P , small rounding errors in the algorithm cause very
large errors in the solution

• this is called numerical instability: for the first choice of P , the
algorithm is unstable; for the second choice of P , it is stable

• from numerical analysis: there is a simple rule for selecting a good
(stable) permutation (we’ll skip the details, since we skipped the details
of the factorization algorithm)

• in the example, the second permutation is better because it permutes
the largest element (in absolute value) of the first column of A to the
1,1-position

LU factorization 7-20



Sparse linear equations

if A is sparse, it is usually factored as

A = P1LUP2

P1 and P2 are permutation matrices

• interpretation: permute rows and columns of A and factor Ã = PT
1 APT

2

Ã = LU

• choice of P1 and P2 greatly affects the sparsity of L and U : many
heuristic methods exist for selecting good permutations

• in practice: #flops ≪ (2/3)n3; exact value is a complicated function of
n, number of nonzero elements, sparsity pattern

LU factorization 7-21



Conclusion

different levels of understanding how linear equation solvers work:

highest level: x = A\b costs (2/3)n3; more efficient than x = inv(A)*b

intermediate level: factorization step A = PLU followed by solve step

lowest level: details of factorization A = PLU

• for most applications, level 1 is sufficient

• in some situations (e.g., multiple right-hand sides) level 2 is useful

• level 3 is important only for experts who write numerical libraries

LU factorization 7-22



Operation Count
LU Factorization
Other TopicsOutline

1. Operation Count

2. LU Factorization

3. Other Topics

12



Operation Count
LU Factorization
Other TopicsNumerical Solutions

• A matrix A is said to be ill conditioned if relatively small changes in the
entries of A can cause rlatively large changes in the solutions of Ax = b.

• A is said to be well conditioned if relatively small changes in the entries
of A result in relatively small changes in the solutions of Ax = b.

• reaching RREF as in Gauss-Jordan requires more computation and more
numerical instability hence disadvantageous.

• Gauss elimination is a direct method: the amount of operations can be
specified in advance.
Indirect or Iterative methods work by iteratively improving approximate
solutions until a desired accuracy is reached. Amount of operations
depend on the accuracy required. (way to go if the matrix is sparse)

13



Operation Count
LU Factorization
Other TopicsGauss-Seidel Iterative Method

Example

x1 − 0.25x2 − 0.25x3 = 50
−0.25x1 + x2 − 0.25x4 = 50
−0.25x1 + x3 − 0.25x4 = 25

− 0.25x2 − 0.25x3 + x4 = 25

x1 = 0.25x2 + 0.25x3 + 50
x2 = 0.25x1 + 0.25x4 + 50
x3 = 0.25x1 + 0.25x4 + 25
x4 = 0.25x2 + 0.25x3 + 25

We start from an approximation, eg, x (0)
1 = 100, x (0)

2 = 100, x (0)
3 = 100, x (0)

4 = 100,
and use the equatiuons above to find a perhaps better approximation:

x (1)
1 = 0.25x (0)

2 + 0.25x (0)
3 + 50.00 = 100.00

x (1)
2 = 0.25x (1)

1 + 0.25x (0)
4 + 50.00 = 100.00

x (1)
3 = 0.25x (1)

1 + 0.25x (0)
4 + 25.00 = 75.00

x (1)
4 = 0.25x (1)

2 + 0.25x (1)
3 + 25.00 = 68.75

14



Operation Count
LU Factorization
Other Topics

x (2)
1 = 0.25x (1)

2 + 0.25x (1)
3 + 50.00 = 93.750

x (2)
2 = 0.25x (2)

1 + 0.25x (1)
4 + 50.00 = 90.625

x (2)
3 = 0.25x (2)

1 + 0.25x (1)
4 + 25.00 = 65.625

x (2)
4 = 0.25x (2)

2 + 0.25x (2)
3 + 25.00 = 64.062

15


	Operation Count
	LU Factorization
	Other Topics

