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Neighborhood function

Neighborhood function Nπ : Sπ → 2Sπ

Also defined as: N : S × S → {T ,F} or N ⊆ S × S

I neighborhood (set) of candidate solution s: N(s) := {s ′ ∈ S | N (s, s ′)}
I neighborhood size is |N(s)|
I neighborhood is symmetric if: s ′ ∈ N(s)⇒ s ∈ N(s ′)
I neighborhood graph of (S ,N, π) is a directed graph: GNπ := (V ,A)

with V = Sπ and (uv) ∈ A⇔ v ∈ N(u)
(if symmetric neighborhood  undirected graph)

Notation: N when set, N when collection of sets or function
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A neighborhood function is also defined by means of an operator (aka move).

An operator ∆ is a collection of operator functions δ : S → S such that

s ′ ∈ N(s) =⇒ ∃ δ ∈ ∆, δ(s) = s ′

Definition

k-exchange neighborhood: candidate solutions s, s ′ are neighbors iff s differs
from s ′ in at most k solution components

Examples:

I 1-exchange (flip) neighborhood for SAT
(solution components = single variable assignments)

I 2-exchange neighborhood for TSP
(solution components = edges in given graph)
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Definition:

I Local minimum: search position without improving neighbors wrt given
evaluation function f and neighborhood N ,
i.e., position s ∈ S such that f (s) ≤ f (s ′) for all s ′ ∈ N(s).

I Strict local minimum: search position s ∈ S such that
f (s) < f (s ′) for all s ′ ∈ N(s).

I Local maxima and strict local maxima: defined analogously.
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Note:

I Local search implements a walk through the neighborhood graph

I Procedural versions of init, step and terminate implement sampling
from respective probability distributions.

I Local search algorithms can be described as Markov processes:
behavior in any search state {s,m} depends only
on current position s
higher order MP if (limited) memory m.
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Step function

Search step (or move):
pair of search positions s, s ′ for which
s ′ can be reached from s in one step, i.e., N (s, s ′) and
step({s,m}, {s ′,m′}) > 0 for some memory states m,m′ ∈ M.

I Search trajectory: finite sequence of search positions 〈s0, s1, . . . , sk〉 such
that (si−1, si ) is a search step for any i ∈ {1, . . . , k}
and the probability of initializing the search at s0
is greater than zero, i.e., init({s0,m}) > 0
for some memory state m ∈ M.

I Search strategy: specified by init and step function; to some extent
independent of problem instance and other components of LS algorithm.

I random
I based on evaluation function
I based on memory
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Goal: providing a formal description of neighborhood functions for the three
main solution representations:

I Permutation
I linear permutation: Single Machine Total Weighted Tardiness Problem
I circular permutation: Traveling Salesman Problem

I Assignment: SAT, CSP
I Set, Partition: Max Independent Set

A neighborhood function N : S → 2S is also defined through an operator.
An operator ∆ is a collection of operator functions δ : S → S such that

s ′ ∈ N(s) ⇐⇒ ∃δ ∈ ∆ | δ(s) = s ′
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Sn indicates the set all permutations of the numbers {1, 2, . . . , n}

(1, 2 . . . , n) is the identity permutation ι.

If π ∈ Π(n) and 1 ≤ i ≤ n then:
I πi is the element at position i
I posπ(i) is the position of element i

Alternatively, a permutation is a bijective function π(i) = πi

The permutation product π · π′ is the composition (π · π′)i = π′(π(i))

For each π there exists a permutation such that π−1 · π = ι
π−1(i) = posπ(i)

∆N ⊂ Sn
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Swap operator
∆S = {δiS | 1 ≤ i ≤ n}

δiS(π1 . . . πiπi+1 . . . πn) = (π1 . . . πi+1πi . . . πn)

Interchange operator

∆X = {δijX | 1 ≤ i < j ≤ n}

δijX (π) = (π1 . . . πi−1πjπi+1 . . . πj−1πiπj+1 . . . πn)

(≡ set of all transpositions)

Insert operator

∆I = {δijI | 1 ≤ i ≤ n, 1 ≤ j ≤ n, j 6= i}

δijI (π) =

{
(π1 . . . πi−1πi+1 . . . πjπiπj+1 . . . πn) i < j
(π1 . . . πjπiπj+1 . . . πi−1πi+1 . . . πn) i > j
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Reversal (2-edge-exchange)

∆R = {δijR | 1 ≤ i < j ≤ n}

δijR(π) = (π1 . . . πi−1πj . . . πiπj+1 . . . πn)

Block moves (3-edge-exchange)

∆B = {δijkB | 1 ≤ i < j < k ≤ n}

δijB(π) = (π1 . . . πi−1πj . . . πkπi . . . πj−1πk+1 . . . πn)

Short block move (Or-edge-exchange)

∆SB = {δijSB | 1 ≤ i < j ≤ n}

δijSB(π) = (π1 . . . πi−1πjπj+1πj+2πi . . . πj−1πj+3 . . . πn)

14



Local Search Revisited
MetaheuristicsAssignments

An assignment can be represented as a mapping
σ : {X1 . . .Xn} → {v : v ∈ D, |D| = k}:

σ = {Xi = vi ,Xj = vj , . . .}

One-exchange operator

∆1E = {δil1E | 1 ≤ i ≤ n, 1 ≤ l ≤ k}

δil1E
(
σ) =

{
σ′ : σ′(Xi ) = vl and σ′(Xj) = σ(Xj) ∀j 6= i

}
Two-exchange operator

∆2E = {δij2E | 1 ≤ i < j ≤ n}

δij2E (σ) =
{
σ′ : σ′(Xi ) = σ(Xj), σ

′(Xj) = σ(Xi ) and σ′(Xl) = σ(Xl)∀l 6= i , j
}
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An assignment can be represented as a partition of objects selected and not
selected s : {X} → {C ,C}
(it can also be represented by a bit string)

One-addition operator
∆1E = {δv1E | v ∈ C̄}

δv1E
(
s) =

{
s : C ′ = C ∪ v and C̄ ′ = C̄ \ v}

One-deletion operator
∆1E = {δv1E | v ∈ C}

δv1E
(
s) =

{
s : C ′ = C \ v and C̄ ′ = C̄ ∪ v}

Swap operator
∆1E = {δv1E | v ∈ C , u ∈ C̄}

δv1E
(
s) =

{
s : C ′ = C ∪ u \ v and C̄ ′ = C̄ ∪ v \ u}
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Set of paths in N with s, s ′ ∈ S :

Φ(s, s ′) = {(s1, . . . , sh) | s1 = s, sh = s ′ ∀i : 1 ≤ i ≤ h − 1, 〈si , si+1〉 ∈ EN }

If φ = (s1, . . . , sh) ∈ Φ(s, s ′) let |φ| = h be the length of the path; then the
distance between any two solutions s, s ′ is the length of shortest path
between s and s ′ in N :

dN (s, s ′) = min
φ∈Φ(s,s′)

|Φ|

diam(N ) = max{dN (s, s ′) | s, s ′ ∈ S} (= maximal distance between any two
candidate solutions)
(= worst-case lower bound for number of search steps required for reaching
(optimal) solutions)

Note: with permutations it is easy to see that:

dN (π, π′) = dN (π−1 · π′, ι)
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Distances for Linear Permutation Representations

I Swap neighborhood operator
computable in O(n2) by the precedence based distance metric:
dS(π, π′) = #{〈i , j〉|1 ≤ i < j ≤ n, posπ′(πj) < posπ′(πi )}.
diam(GN ) = n(n − 1)/2

I Interchange neighborhood operator
Computable in O(n) + O(n) since
dX (π, π′) = dX (π−1 · π′, ι) = n − c(π−1 · π′)
c(π) is the number of disjoint cycles that decompose a permutation.
diam(GNX ) = n − 1

I Insert neighborhood operator
Computable in O(n) + O(n log(n)) since
dI (π, π

′) = dI (π
−1 · π′, ι) = n − |lis(π−1 · π′)| where lis(π) denotes the

length of the longest increasing subsequence.
diam(GNI ) = n − 1
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Distances for Circular Permutation Representations

I Reversal neighborhood operator
sorting by reversal is known to be NP-hard
surrogate in TSP: bond distance

I Block moves neighborhood operator
unknown whether it is NP-hard but there does not exist a proved
polynomial-time algorithm
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Distances for Assignment Representations

I Hamming Distance

I An assignment can be seen as a partition of n in k mutually exclusive
non-empty subsets

One-exchange neighborhood operator
The partition-distance d1E (P,P ′) between two partitions P and P ′ is
the minimum number of elements that must be moved between subsets
in P so that the resulting partition equals P ′.

The partition-distance can be computed in polynomial time by solving
an assignment problem. Given the assignment matrix M where in each
cell (i , j) it is |Si ∩ S ′j | with Si ∈ P and S ′j ∈ P ′ and defined A(P,P ′)
the assignment of maximal sum then it is d1E (P,P ′) = n − A(P,P ′)
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Example: Search space size and diameter for SAT

SAT instance with n variables, 1-flip neighborhood:
GN = n-dimensional hypercube; diameter of GN = n.
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Example: Search space size and diameter for the TSP

I Search space size = (n − 1)!/2

I Insert neighborhood
size = (n − 3)n
diameter = n − 2

I 2-exchange neighborhood
size =

(n
2

)
= n · (n − 1)/2

diameter in [n/2, n − 2]

I 3-exchange neighborhood
size =

(n
3

)
= n · (n − 1) · (n − 2)/6

diameter in [n/3, n − 1]
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Let N1 and N2 be two different neighborhood functions for the same
instance (S , f , π) of a combinatorial optimization problem.
If for all solutions s ∈ S we have N1(s) ⊆ N2(s) then we say that N2
dominates N1

Example:

In TSP, 1-insert is dominated by 3-exchange.
(1-insert corresponds to 3-exchange and there are 3-exchanges that are not
1-insert)
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Given:
I Problem instance π

I Search space Sπ

I Neighborhood function N : S ⊆ 2S

I Evaluation function fπ : S → R

Definition:
The search landscape L is the vertex-labeled neighborhood graph given by
the triplet L = 〈Sπ,Nπ, fπ〉.
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Transition Graph of Iterative Improvement
Given L = 〈Sπ,Nπ, fπ〉, the transition graph of iterative improvement is a
directed acyclic subgraph obtained from L by deleting all arcs (i , j) for which
it holds that the cost of solution j is worse than or equal to the cost of
solution i .

It can be defined for other algorithms as well and it plays a central role in the
theoretical analysis of proofs of convergence.
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Ideal visualization of landscapes principles

I Simplified landscape
representation I Tabu Search I Guided Local Search

I Iterated Local Search I Evolutionary Alg.
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The behavior and performance of an LS algorithm on a given problem
instance crucially depends on properties of the respective search landscape.

Simple properties:
I search space size |S |
I reachability: solution j is reachable from solution i if neighborhood

graph has a path from i to j .

I strongly connected neighborhood graph
I weakly optimally connected neighborhood graph

I distance between solutions
I neighborhood size (ie, degree of vertices in neigh. graph)
I cost of fully examining the neighborhood
I relation between different neighborhood functions

(if N1(s) ⊆ N2(s) forall s ∈ S then N2 dominates N1)
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I number of (optimal) solutions |S ′|, solution density |S ′|/|S |

I distribution of solutions within the neighborhood graph
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Random instances  m clauses of n uniformly chosen variables
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SLMIN

SLOPELEDGE

LMAXSLMAX

LMIN

IPLAT

position type > = <

SLMIN (strict local min) + – –
LMIN (local min) + + –
IPLAT (interior plateau) – + –
SLOPE + – +
LEDGE + + +
LMAX (local max) – + +
SLMAX (strict local max) – – +

“+” = present, “–” absent; table entries refer to neighbors with
larger (“>”) , equal (“=”), and smaller (“<”) evaluation function values
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I plateux

I barrier and basins

B4

B3

B1

B2

l2
l1

B4

B3

B1

B2
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Possibilities:

I Restart: re-initialize search whenever a local optimum
is encountered.
(Often rather ineffective due to cost of initialization.)

I Non-improving steps: in local optima, allow selection of
candidate solutions with equal or worse evaluation function value, e.g.,
using minimally worsening steps.
(Can lead to long walks in plateaus, i.e., regions of
search positions with identical evaluation function.)

I Diversify the neighborhood: multiple, variable-size, rich (while still
preserving incremental algorithmics insights)

Note: None of these mechanisms is guaranteed to always
escape effectively from local optima.
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Diversification vs Intensification

I Intensification: aims at greedily increasing solution quality, e.g., by
exploiting the evaluation function.

I Diversification: aims at preventing search stagnation, that is, the search
process getting trapped in confined regions.

I Goal-directed and randomized components of LS strategy need to be
balanced carefully.

Examples:
I Iterative Improvement (II): intensification strategy.
I Uninformed Random Walk/Picking (URW/P): diversification strategy.

Balanced combination of intensification and diversification mechanisms forms
the basis for advanced LS methods.
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Goal:

Effectively escape from local minima of given evaluation function.

General approach:

For fixed neighborhood, use step function that permits
worsening search steps.

Specific methods:
I Stochastic Local Search
I Simulated Annealing
I (Guided Local Search)
I Tabu Search
I Iterated Local Search
I Variable Neighborhood Search
I Evolutionary Algorithms
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