DM841 Discrete Optimization

Part 2 – Lecture 5 Local Search Theory

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

1. Local Search Revisited

Search Space Properties Neighborhoods Formalized Distances Landscape Characteristics

1. Local Search Revisited

Search Space Properties Neighborhoods Formalized Distances Landscape Characteristics

1. Local Search Revisited Search Space Properties

Neighborhoods Formalized Distances Landscape Characteristics

LS Algorithm Components Neighborhood function

Neighborhood function $\mathcal{N}_{\pi}: S_{\pi} \rightarrow 2^{S_{\pi}}$

Also defined as: $\mathcal{N} : S \times S \rightarrow \{T, F\}$ or $\mathcal{N} \subseteq S \times S$

- ▶ neighborhood (set) of candidate solution s: $N(s) := \{s' \in S \mid \mathcal{N}(s, s')\}$
- ▶ neighborhood size is |N(s)|
- ▶ neighborhood is symmetric if: $s' \in N(s) \Rightarrow s \in N(s')$
- ▶ neighborhood graph of (S, N, π) is a directed graph: $G_{N_{\pi}} := (V, A)$ with $V = S_{\pi}$ and $(uv) \in A \Leftrightarrow v \in N(u)$ (if symmetric neighborhood \rightsquigarrow undirected graph)

Notation: N when set, \mathcal{N} when collection of sets or function

A neighborhood function is also defined by means of an operator (aka move). An operator Δ is a collection of operator functions $\delta : S \to S$ such that

 $s' \in N(s) \implies \exists \delta \in \Delta, \delta(s) = s'$

Definition

k-exchange neighborhood: candidate solutions s, s' are neighbors iff s differs from s' in at most k solution components

Examples:

- 1-exchange (flip) neighborhood for SAT (solution components = single variable assignments)
- 2-exchange neighborhood for TSP (solution components = edges in given graph)

Definition:

- Local minimum: search position without improving neighbors wrt given evaluation function f and neighborhood N, *i.e.*, position s ∈ S such that f(s) ≤ f(s') for all s' ∈ N(s).
- ▶ Strict local minimum: search position $s \in S$ such that f(s) < f(s') for all $s' \in N(s)$.
- Local maxima and strict local maxima: defined analogously.

LS Algorithm Components

Note:

- Local search implements a walk through the neighborhood graph
- Procedural versions of init, step and terminate implement sampling from respective probability distributions.
- Local search algorithms can be described as Markov processes: behavior in any search state {s, m} depends only on current position s higher order MP if (limited) memory m.

LS Algorithm Components Step function

Search step (or move): pair of search positions s, s' for which s' can be reached from s in one step, *i.e.*, $\mathcal{N}(s, s')$ and step($\{s, m\}, \{s', m'\}$) > 0 for some memory states $m, m' \in M$.

- Search trajectory: finite sequence of search positions (s₀, s₁,..., s_k) such that (s_{i-1}, s_i) is a search step for any i ∈ {1,..., k} and the probability of initializing the search at s₀ is greater than zero, i.e., init({s₀, m}) > 0 for some memory state m ∈ M.
- Search strategy: specified by init and step function; to some extent independent of problem instance and other components of LS algorithm.
 - random
 - based on evaluation function
 - based on memory

1. Local Search Revisited

Search Space Properties Neighborhoods Formalized Distances

Neighborhood Operator

Goal: providing a formal description of neighborhood functions for the three main solution representations:

- Permutation
 - Inear permutation: Single Machine Total Weighted Tardiness Problem
 - circular permutation: Traveling Salesman Problem
- Assignment: SAT, CSP
- Set, Partition: Max Independent Set

A neighborhood function $\mathcal{N}: S \to 2^S$ is also defined through an operator. An operator Δ is a collection of operator functions $\delta: S \to S$ such that

 $s' \in N(s) \iff \exists \delta \in \Delta \mid \delta(s) = s'$

Permutations

 S_n indicates the set all permutations of the numbers $\{1, 2, \ldots, n\}$

(1, 2..., n) is the identity permutation ι .

If $\pi \in \Pi(n)$ and $1 \le i \le n$ then:

- π_i is the element at position *i*
- $pos_{\pi}(i)$ is the position of element *i*

Alternatively, a permutation is a bijective function $\pi(i) = \pi_i$

The permutation product $\pi \cdot \pi'$ is the composition $(\pi \cdot \pi')_i = \pi'(\pi(i))$

For each π there exists a permutation such that $\pi^{-1} \cdot \pi = \iota \pi^{-1}(i) = pos_{\pi}(i)$

$$\Delta_N \subset S_n$$

Linear Permutations

Swap operator

$$\Delta_{\mathcal{S}} = \{\delta_{\mathcal{S}}^i \mid 1 \le i \le n\}$$

$$\delta_{\mathcal{S}}^{i}(\pi_{1}\ldots\pi_{i}\pi_{i+1}\ldots\pi_{n})=(\pi_{1}\ldots\pi_{i+1}\pi_{i}\ldots\pi_{n})$$

Interchange operator

$$\Delta_X = \{ \delta_X^{ij} \mid 1 \le i < j \le n \}$$

$$\delta_X^{ij}(\pi) = (\pi_1 \dots \pi_{i-1} \pi_j \pi_{i+1} \dots \pi_{j-1} \pi_i \pi_{j+1} \dots \pi_n)$$

(\equiv set of all transpositions)

Insert operator

$$\Delta_I = \{\delta_I^{ij} \mid 1 \le i \le n, 1 \le j \le n, j \ne i\}$$

$$\delta_{I}^{ij}(\pi) = \begin{cases} (\pi_{1} \dots \pi_{i-1} \pi_{i+1} \dots \pi_{j} \pi_{i} \pi_{j+1} \dots \pi_{n}) & i < j \\ (\pi_{1} \dots \pi_{j} \pi_{i} \pi_{j+1} \dots \pi_{i-1} \pi_{i+1} \dots \pi_{n}) & i > j \end{cases}$$

Circular Permutations

Reversal (2-edge-exchange)

$$\Delta_R = \{ \delta_R^{ij} \mid 1 \le i < j \le n \}$$

$$\delta_R^{ij}(\pi) = (\pi_1 \dots \pi_{i-1} \pi_j \dots \pi_i \pi_{j+1} \dots \pi_n)$$

Block moves (3-edge-exchange)

$$\Delta_B = \{ \delta_B^{ijk} \mid 1 \le i < j < k \le n \}$$

$$\delta_B^{ij}(\pi) = (\pi_1 \dots \pi_{i-1} \pi_j \dots \pi_k \pi_i \dots \pi_{j-1} \pi_{k+1} \dots \pi_n)$$

Short block move (Or-edge-exchange)

$$\Delta_{SB} = \{ \delta_{SB}^{ij} \mid 1 \le i < j \le n \}$$

$$\delta_{SB}^{ij}(\pi) = (\pi_1 \dots \pi_{i-1} \pi_j \pi_{j+1} \pi_{j+2} \pi_i \dots \pi_{j-1} \pi_{j+3} \dots \pi_n)$$

Assignments

An assignment can be represented as a mapping $\sigma : \{X_1 \dots X_n\} \rightarrow \{v : v \in D, |D| = k\}$:

$$\sigma = \{X_i = v_i, X_j = v_j, \ldots\}$$

One-exchange operator

$$\Delta_{1E} = \{ \delta_{1E}^{il} \mid 1 \le i \le n, 1 \le l \le k \}$$

$$\delta_{1E}^{il}(\sigma) = \{ \sigma' : \sigma'(X_i) = v_l \text{ and } \sigma'(X_j) = \sigma(X_j) \ \forall j \ne i \}$$

Two-exchange operator

$$\Delta_{2E} = \{ \delta_{2E}^{ij} \mid 1 \le i < j \le n \}$$

 $\delta_{2E}^{ij}(\sigma) = \left\{ \sigma' : \sigma'(X_i) = \sigma(X_j), \sigma'(X_j) = \sigma(X_i) \text{ and } \sigma'(X_l) = \sigma(X_l) \forall l \neq i, j \right\}$

Partitioning

An assignment can be represented as a partition of objects selected and not selected $s : \{X\} \rightarrow \{C, \overline{C}\}$ (it can also be represented by a bit string)

One-addition operator

 $\Delta_{1E} = \{\delta_{1E}^{v} \mid v \in \bar{C}\}$

$$\delta_{1E}^{v}(s) = \left\{s: C' = C \cup v \text{ and } ar{C}' = ar{C} \setminus v
ight\}$$

One-deletion operator

$$\Delta_{1E} = \{\delta_{1E}^{\mathsf{v}} \mid \mathsf{v} \in \mathsf{C}\}$$

$$\delta_{1E}^{v}(s) = \left\{s: C' = C \setminus v \text{ and } \bar{C}' = \bar{C} \cup v\right\}$$

Swap operator

$$\Delta_{1E} = \{\delta_{1E}^{v} \mid v \in C, u \in \overline{C}\}$$

$$\delta_{1E}^{\nu}(s) = \left\{s: C' = C \cup u \setminus v \text{ and } \bar{C}' = \bar{C} \cup v \setminus u\right\}$$

1. Local Search Revisited

Search Space Properties Neighborhoods Formalized **Distances** Landscape Characteristics

Distances

Set of paths in \mathcal{N} with $s, s' \in S$: $\Phi(s, s') = \{(s_1, \dots, s_h) \mid s_1 = s, s_h = s' \forall i : 1 \le i \le h - 1, \langle s_i, s_{i+1} \rangle \in E_{\mathcal{N}}\}$

If $\phi = (s_1, \ldots, s_h) \in \Phi(s, s')$ let $|\phi| = h$ be the length of the path; then the distance between any two solutions s, s' is the length of shortest path between s and s' in \mathcal{N} :

$$d_\mathcal{N}(s,s') = \min_{\phi \in \Phi(s,s')} |\Phi|$$

 $diam(\mathcal{N}) = max\{d_{\mathcal{N}}(s,s') \mid s,s' \in S\}$ (= maximal distance between any two candidate solutions)

(= worst-case lower bound for number of search steps required for reaching (optimal) solutions)

Note: with permutations it is easy to see that:

$$d_{\mathcal{N}}(\pi,\pi')=d_{\mathcal{N}}(\pi^{-1}\cdot\pi',\iota)$$

Distances for Linear Permutation Representations

Swap neighborhood operator computable in O(n²) by the precedence based distance metric: d_S(π, π') = #{⟨i,j⟩|1 ≤ i < j ≤ n, pos_{π'}(π_j) < pos_{π'}(π_i)}. diam(G_N) = n(n − 1)/2

Interchange neighborhood operator
 Computable in O(n) + O(n) since
 d_X(π, π') = d_X(π⁻¹ ⋅ π', ι) = n - c(π⁻¹ ⋅ π')
 c(π) is the number of disjoint cycles that decompose a permutation.
 diam(G_{Nx}) = n - 1

Insert neighborhood operator

Computable in $O(n) + O(n \log(n))$ since $d_l(\pi, \pi') = d_l(\pi^{-1} \cdot \pi', \iota) = n - |lis(\pi^{-1} \cdot \pi')|$ where $lis(\pi)$ denotes the length of the longest increasing subsequence. $diam(G_{\mathcal{N}_l}) = n - 1$

Distances for Circular Permutation Representations

- Reversal neighborhood operator sorting by reversal is known to be NP-hard surrogate in TSP: bond distance
- Block moves neighborhood operator unknown whether it is NP-hard but there does not exist a proved polynomial-time algorithm

Distances for Assignment Representations

- ► Hamming Distance
- ► An assignment can be seen as a partition of *n* in *k* mutually exclusive non-empty subsets

One-exchange neighborhood operator

The partition-distance $d_{1E}(\mathcal{P}, \mathcal{P}')$ between two partitions \mathcal{P} and \mathcal{P}' is the minimum number of elements that must be moved between subsets in \mathcal{P} so that the resulting partition equals \mathcal{P}' .

The partition-distance can be computed in polynomial time by solving an assignment problem. Given the assignment matrix M where in each cell (i, j) it is $|S_i \cap S'_j|$ with $S_i \in \mathcal{P}$ and $S'_j \in \mathcal{P}'$ and defined $A(\mathcal{P}, \mathcal{P}')$ the assignment of maximal sum then it is $d_{1E}(\mathcal{P}, \mathcal{P}') = n - A(\mathcal{P}, \mathcal{P}')$

Example: Search space size and diameter for SAT

SAT instance with *n* variables, 1-flip neighborhood: $G_{\mathcal{N}} = n$ -dimensional hypercube; diameter of $G_{\mathcal{N}} = n$.

Example: Search space size and diameter for the TSP

- Search space size = (n-1)!/2
- ► Insert neighborhood size = (n-3)ndiameter = n-2
- ► 2-exchange neighborhood size = $\binom{n}{2} = n \cdot (n-1)/2$ diameter in $\lfloor n/2, n-2 \rfloor$
- S-exchange neighborhood size = ⁿ₃ = n ⋅ (n − 1) ⋅ (n − 2)/6 diameter in [n/3, n − 1]

Let \mathcal{N}_1 and \mathcal{N}_2 be two different neighborhood functions for the same instance (S, f, π) of a combinatorial optimization problem. If for all solutions $s \in S$ we have $N_1(s) \subseteq N_2(s)$ then we say that \mathcal{N}_2 dominates \mathcal{N}_1

Example:

In TSP, 1-insert is dominated by 3-exchange. (1-insert corresponds to 3-exchange and there are 3-exchanges that are not 1-insert)

Search Landscape

Given:

- Problem instance π
- Search space S_{π}
- Neighborhood function $\mathcal{N} : S \subseteq 2^S$
- Evaluation function $f_{\pi}: S \to \mathbf{R}$

Definition:

The search landscape L is the vertex-labeled neighborhood graph given by the triplet $\mathcal{L} = \langle S_{\pi}, N_{\pi}, f_{\pi} \rangle$.

Search Landscape

Transition Graph of Iterative Improvement

Given $\mathcal{L} = \langle S_{\pi}, N_{\pi}, f_{\pi} \rangle$, the transition graph of iterative improvement is a directed acyclic subgraph obtained from \mathcal{L} by deleting all arcs (i, j) for which it holds that the cost of solution j is worse than or equal to the cost of solution i.

It can be defined for other algorithms as well and it plays a central role in the theoretical analysis of proofs of convergence.

Ideal visualization of landscapes principles

Fundamental Properties

The behavior and performance of an LS algorithm on a given problem instance crucially depends on properties of the respective search landscape.

Simple properties:

- ▶ search space size |S|
- reachability: solution j is reachable from solution i if neighborhood graph has a path from i to j.
 - strongly connected neighborhood graph
 - weakly optimally connected neighborhood graph
- distance between solutions
- neighborhood size (ie, degree of vertices in neigh. graph)
- cost of fully examining the neighborhood
- relation between different neighborhood functions (if N₁(s) ⊆ N₂(s) forall s ∈ S then N₂ dominates N₁)

1. Local Search Revisited

Search Space Properties Neighborhoods Formalized Distances Landscape Characteristics

Other Search Space Properties

- ▶ number of (optimal) solutions |S'|, solution density |S'|/|S|
- distribution of solutions within the neighborhood graph

Phase Transition for 3-SAT

Random instances $\rightsquigarrow m$ clauses of n uniformly chosen variables

31

Classification of search positions

position type	>	=	<
SLMIN (strict local min)	+	_	_
LMIN (local min)	+	+	_
IPLAT (interior plateau)	_	+	_
SLOPE	+	_	+
LEDGE	+	+	+
LMAX (local max)	_	+	+
SLMAX (strict local max)	-	_	+

"+" = present, "-" absent; table entries refer to neighbors with larger (">"), equal ("="), and smaller ("<") evaluation function values

Other Search Space Properties

▶ plateux

barrier and basins

1. Local Search Revisited

Search Space Properties Neighborhoods Formalized Distances Landscape Characteristics

Escaping Local Optima

Possibilities:

 Restart: re-initialize search whenever a local optimum is encountered.
 (Often rather ineffective due to cost of initialization.)

 Non-improving steps: in local optima, allow selection of candidate solutions with equal or worse evaluation function value, *e.g.*, using minimally worsening steps.
 (Can lead to long walks in *plateaus*, *i.e.*, regions of search positions with identical evaluation function.)

 Diversify the neighborhood: multiple, variable-size, rich (while still preserving incremental algorithmics insights)

Note: None of these mechanisms is guaranteed to always escape effectively from local optima.

Diversification vs Intensification

- ▶ Intensification: aims at greedily increasing solution quality, *e.g.*, by exploiting the evaluation function.
- Diversification: aims at preventing search stagnation, that is, the search process getting trapped in confined regions.
- Goal-directed and randomized components of LS strategy need to be balanced carefully.

Examples:

- ► Iterative Improvement (II): *intensification* strategy.
- Uninformed Random Walk/Picking (URW/P): diversification strategy.

Balanced combination of intensification and diversification mechanisms forms the basis for advanced LS methods.

'Simple' Metaheuristics

Goal:

Effectively escape from local minima of given evaluation function.

General approach:

For fixed neighborhood, use step function that permits *worsening search steps*.

Specific methods:

- Stochastic Local Search
- Simulated Annealing
- (Guided Local Search)
- Tabu Search
- Iterated Local Search
- Variable Neighborhood Search
- Evolutionary Algorithms