
DM865 – Spring 2018

Heuristics and Approximation Algorithms

Experimental Analysis

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Experimental Analysis

Outline

1. Experimental Analysis
Motivations and Goals
Descriptive Statistics

Performance Measures
Sample Statistics

Scenarios of Analysis
A. Single-pass heuristics
B. Asymptotic heuristics

Guidelines for Presenting Data

2



Experimental Analysis

Outline

1. Experimental Analysis
Motivations and Goals
Descriptive Statistics

Performance Measures
Sample Statistics

Scenarios of Analysis
A. Single-pass heuristics
B. Asymptotic heuristics

Guidelines for Presenting Data

3



Experimental Analysis

Contents and Goals

Provide a view of issues in Experimental Algorithmics

• Exploratory data analysis
• Presenting results in a concise way with graphs and tables
• Organizational issues and Experimental Design

• Basics of inferential statistics
• Sequential statistical testing: race, a methodology for tuning

The goal of Experimental Algorithmics is not only producing a sound analysis but also adding an
important tool to the development of a good solver for a given problem.

Experimental Algorithmics is an important part in the algorithm production cycle, which is referred
to as Algorithm Engineering
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The Engineering Cycle

from http://www.algorithm-engineering.de/
6

http://www.algorithm-engineering.de/


Experimental Analysis

Experimental Algorithmics

 (Algorithm)
Mathematical Model Simulation Program

Experiment

In empirical studies we consider simulation programs which are the implementation of a
mathematical model (the algorithm)

[McGeoch, 1996]

7



Experimental Analysis

Experimental Algorithmics

Goals

• Defining standard methodologies
• Comparing relative performance of algorithms so as to identify the best ones for a given
application

• Characterizing the behavior of algorithms
• Identifying algorithm separators, i.e., families of problem instances for which the performance
differ

• Providing new insights in algorithm design

8



Experimental Analysis

Fairness Principle

Fairness principle: being completely fair is perhaps impossible but try to remove any possible bias:

• possibly all algorithms must be implemented with the same style, with the same language and
sharing common subprocedures and data structures

• the code must be optimized, e.g., using the best possible data structures
• running times must be comparable, e.g., by running experiments on the same computational
environment (or redistributing them randomly)

9



Experimental Analysis

Definitions

The most typical scenario considered in analysis of search heuristics

Asymptotic heuristics with time/quality limit decided a priori

The algorithm A∞ is halted when time expires or a solution of a given quality is found.

Deterministic case: A∞ on π returns a
solution of cost x .

The performance of A∞ on π is a scalar y = x .

Randomized case: A∞ on π returns a solution
of cost X , where X is a random variable.

The performance of A∞ on π is the univariate
Y = X .

[This is not the only relevant scenario: to be refined later]
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Random Variables and Probability
Statistics deals with random (or stochastic) variables.

A variable is called random if, prior to observation, its outcome cannot be predicted with certainty.

The uncertainty is described by a probability distribution.

Discrete variables

Probability distribution:

pi = P[x = vi ]

Cumulative Distribution Function (CDF)

F (v) = P[x ≤ v ] =
∑
i

pi

Mean

µ = E [X ] =
∑

xipi

Variance

σ2 = E [(X − µ)2] =
∑

(xi − µ)2pi

Continuous variables

Probability density function (pdf):

f (v) =
dF (v)

dv

Cumulative Distribution Function (CDF):

F (v) =

∫ v

−∞
f (v)dv

Mean

µ = E [X ] =

∫
xf (x)dx

Variance

σ2 = E [(X − µ)2] =

∫
(x − µ)2f (x) dx



Experimental Analysis

Generalization

For each general problem P (e.g., TSP, GCP) we denote by Π a set
(or class) of instances and by π ∈ Π a single instance.

On a specific instance, the random variable Y that defines the performance measure of an
algorithm is described by its probability distribution/density function

Pr(Y = y | π)

It is often more interesting to generalize the performance
on a class of instances Π, that is,

Pr(Y = y ,Π) =
∑
π∈Π

Pr(Y = y | π)Pr(π)
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Experimental Analysis

Sampling

In experiments,

1. we sample the population of instances and
2. we sample the performance of the algorithm on each sampled instance

If on an instance π we run the algorithm r times then we have r replicates of the performance
measure Y , denoted Y1, . . . ,Yr , which are independent and identically distributed (i.i.d.), i.e.

Pr(y1, . . . , yr |π) =
r∏

j=1

Pr(yj | π)

Pr(y1, . . . , yr ) =
∑
π∈Π

Pr(y1, . . . , yr | π)Pr(π).
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Experimental Analysis

Instance Selection

In real-life applications a simulation of p(π) can be obtained by
historical data.

In simulation studies instances may be:

• real world instances
• random variants of real world-instances
• online libraries
• randomly generated instances

They may be grouped in classes according to some features whose impact may be worth studying:

• type (for features that might impact performance)
• size (for scaling studies)
• hardness (focus on hard instances)
• application (e.g., CSP encodings of scheduling problems), ...

Within the class, instances are drawn with uniform probability p(π) = c
15



Experimental Analysis

Statistical Methods

The analysis of performance is based on finite-size sampled data.
Statistics provides the methods and the mathematical basis to

• describe, summarizing, the data (descriptive statistics)
• make inference on those data (inferential statistics)

Statistics helps to

• guarantee reproducibility
• make results reliable
(are the observed results enough to justify the claims?)

• extract relevant results from large amount of data

In the practical context of heuristic design and implementation (i.e., engineering), statistics helps to
take correct design decisions with the least amount of experimentation
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Experimental Analysis

Objectives of the Experiments

• Comparison:
bigger/smaller, same/different, Algorithm
Configuration, Component-Based Analysis

• Standard statistical methods: experimental
designs, test hypothesis and estimation

• Characterization:
Interpolation: fitting models to data
Extrapolation: building models of data,
explaining phenomena

• Standard statistical methods: linear and non
linear regression
model fitting
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Experimental Analysis

Objectives of the Experiments
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Experimental Analysis

Measures and Transformations

On a single instance

Design: Several runs on an instance

Algorithm 1 Algorithm 2 . . . Algorithm k
Instance 1 X11 X21 Xk1

...
...

...
...

Instance 1 X1r X2r Xkr
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Experimental Analysis

Measures and Transformations
On a single instance

Computational effort indicators

• number of elementary operations/algorithmic iterations
(e.g., search steps, objective function evaluations, number of visited nodes in the search tree,
consistency checks, etc.)

• total CPU time consumed by the process
(sum of user and system times returned by getrusage)

Solution quality indicators
• value returned by the cost function
• error from optimum/reference value
• (optimality) gap UB−LB

LB+ε (if max UB−LB
UB+ε )

ε is an infinitesimal for the case LB = 0 but UB − LB 6= 0
• ranks
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Experimental Analysis

Measures and Transformations

On a class of instances
Design A: One run on various instances

Algorithm 1 Algorithm 2 . . . Algorithm k
Instance 1 X11 X12 X1k

...
...

...
...

Instance b Xb1 Xb2 Xbk

Design B: Several runs on various instances

Algorithm 1 Algorithm 2 . . . Algorithm k
Instance 1 X111, . . . ,X11r X121, . . . ,X12r X1k1, . . . ,X1kr

Instance 2 X211, . . . ,X21r X221, . . . ,X22r X2k1, . . . ,X2kr

...
...

...
...

Instance b Xb11, . . . ,Xb1r Xb21, . . . ,Xb2r Xbk1, . . . ,Xbkr
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Experimental Analysis

Measures and Transformations
On a class of instances

Computational effort indicators
• no transformation if the interest is in studying scaling
• standardization if a fixed time limit is used
• geometric mean (used for a set of numbers whose values are meant to be multiplied together
or are exponential in nature),

• otherwise, better to group homogeneously the instances

Solution quality indicators

Different instances imply different scales ⇒ need for an invariant measure

(However, many other measures can be taken both on the algorithms and on the instances
[McGeoch, 1996])
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On a class of instances (cont.)

Solution quality indicators
• Distance or error from a reference value
(assume minimization case):

e1(x , π) =
x(π)− x̄(π)

σ̂(π)
standard score

e2(x , π) =
x(π)− xopt(π)

xopt(π)
relative error

e3(x , π) =
x(π)− xopt(π)

xworst(π)− xopt(π)
invariant [Zemel, 1981]

• optimal value computed exactly or known by construction
• surrogate value such bounds or best known values

• Rank (no need for standardization but loss of information)



Experimental Analysis

Sampling

• We work with samples (instances, solution quality) drawn from populations

Population
P(x , θ)

Parameter θ

Random Sample
X n

Statistical Estimator θ̂
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Experimental Analysis

Summary Measures

Measures to describe or characterize a population

• Measure of central tendency, location
• Measure of dispersion

One such a quantity is

• a parameter if it refers to the population (Greek letters)
• a statistics if it is an estimation of a population parameter from the sample (Latin letters)
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Measures of central tendency

• Arithmetic Average (Sample mean)

X̄ =

∑
xi
n

• Quantile: value above or below which lie a fractional part of the data (used in nonparametric
statistics)

• Median

M = x(n+1)/2

• Quartile

Q1 = x(n+1)/4 Q3 = x3(n+1)/4

• q-quantile

q of data lies below and 1− q lies above

• Mode

value of relatively great concentration of data
(Unimodal vs Multimodal distributions)



Experimental Analysis

Measure of dispersion
• Sample range

R = x(n) − x(1)

• Sample variance

s2 =
1

n − 1

∑
(xi − X̄ )2

• Standard deviation

s =
√
s2

• Inter-quartile range

IQR = Q3 − Q1
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Boxplot and a probability density function (pdf) of a Normal N(0, 1) Population. (source: Wikipedia)
[see also: http://informationandvisualization.de/blog/box-plot]

http://informationandvisualization.de/blog/box-plot
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Experimental Analysis

Colors

D
en

si
ty

0.00

0.05

0.10

0.15

0.20

0.25

80 82 84 86 88 90

Colors

TS1

TS2

TS3

80 82 84 86 88 90

30



Experimental Analysis

In R

> x<-runif (10,0,1)
mean(x), median(x), quantile(x), quantile(x ,0.25)
range(x), var(x), sd(x), IQR(x)

> fivenum(x)
#(minimum , lower -hinge , median , upper -hinge , maximum)
[1] 0.18672 0.26682 0.28927 0.69359 0.92343
> summary(x)
> aggregate(x,list(factors),median)
> boxplot(x)
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Experimental Analysis

Scenarios

A. Single-pass heuristics

B. Asymptotic heuristics
(can be run indefinitely with a chance of continuing to make progress):

Two approaches:

1. Univariate

1.a Time as an external parameter decided a priori
1.b Solution quality as an external parameter decided a priori

2. Cost dependent on running time:
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Experimental Analysis

Scenario A

Single-pass heuristics

Deterministic case: Aa on class Π returns a
solution of cost x with computational effort t
(e.g., running time).

The performance of Aa on class Π is the vector
~y = (x , t).

Randomized case: Aa on class Π returns a
solution of cost X with computational effort T ,
where X and T are random variables.

The performance of Aa on class Π is the
bivariate ~Y = (X ,T ).
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Experimental Analysis

Example

Scenario:

B 3 heuristics Aa1 , Aa2 , Aa3 on class Π.
B homogeneous instances or need for data transformation.
B 1 or r runs per instance
I Interest: inspecting solution cost and running time to observe and compare the level of

approximation and the speed.

Tools:

• Scatter plots of solution-cost and run-time
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Experimental Analysis
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Experimental Analysis

Multi-Criteria Decision Making

Needed some definitions on dominance relations

In Pareto sense, for points in R2

~x1 � ~x2 weakly dominates x1
i ≤ x2

i for all i = 1, . . . , n
~x1 ‖ ~x2 incomparable neither ~x1 � ~x2 nor ~x2 � ~x1
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Experimental Analysis

Scaling Analysis
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Experimental Analysis

Linear regression in log-log plots ⇒ polynomial growth
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Experimental Analysis

Comparative visualization
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Experimental Analysis

Scenarios

A. Single-pass heuristics

B. Asymptotic heuristics
(can be run indefinitely with a chance of continuing to make progress):

Two approaches:

1. Univariate

1.a Time as an external parameter decided a priori
1.b Solution quality as an external parameter decided a priori

2. Cost dependent on running time:
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Experimental Analysis

Scenario B

Asymptotic heuristics

There are two approaches:

1.a. Time as an external parameter decided a priori.
The algorithm is halted when time expires.

Deterministic case: A∞ on class Π returns a
solution of cost x .

The performance of A∞ on class Π is the scalar
y = x .

Randomized case: A∞ on class Π returns a
solution of cost X , where X is a random
variable.

The performance of A∞ on class Π is the
univariate Y = X .
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Experimental Analysis

Example

Scenario:

B 3 heuristics A∞1 , A∞2 , A∞3 on class Π.
(Or 3 heuristics A∞1 , A∞2 , A∞3 on class Π without interest in computation time because
negligible or comparable)

B homogeneous instances (no data transformation) or heterogeneous (data transformation)
B 1 or r runs per instance
B a priori time limit imposed
I Interest: inspecting solution cost

Tools:
• Histograms (summary measures: mean or median or mode?)
• Boxplots
• Empirical cumulative distribution functions (ECDFs)
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# # l o a d t h e d a t a
> l o a d ( " r e s u l t s . r d a " )
> l e v e l s (DATA$ i n s t a n c e )

[ 1 ] " q u e e n 4_4. t x t " " q u e e n 5_5. t x t " " q u e e n 6_6. t x t " " q u e e n 7_7. t x t "
[ 5 ] " q u e e n 8_8. t x t " " q u e e n 9_9. t x t " " q u e e n 1 0_1 0 . t x t " " q u e e n 1 1_1 1 . t x t "
[ 9 ] " q u e e n 1 2_1 2 . t x t " " q u e e n 1 3_1 3 . t x t " " q u e e n 1 4_1 4 . t x t " " q u e e n 1 5_1 5 . t x t "

[ 1 3 ] " q u e e n 1 6_1 6 . t x t " " q u e e n 1 7_1 7 . t x t " " q u e e n 1 8_1 8 . t x t " " q u e e n 1 9_1 9 . t x t "
[ 1 7 ] " q u e e n 2 0_2 0 . t x t " " q u e e n 2 1_2 1 . t x t " " q u e e n 2 2_2 2 . t x t " " q u e e n 2 3_2 3 . t x t "
[ 2 1 ] " q u e e n 2 4_2 4 . t x t " " q u e e n 2 5_2 5 . t x t " " q u e e n 2 6_2 6 . t x t " " q u e e n 2 7_2 7 . t x t "
[ 2 5 ] " q u e e n 2 8_2 8 . t x t " " q u e e n 2 9_2 9 . t x t " " q u e e n 3 0_3 0 . t x t " " q u e e n 3 1_3 1 . t x t "
[ 2 9 ] " q u e e n 3 2_3 2 . t x t "
> bwplot ( r e o r d e r ( a lg , c o l , med ian )~ co l , da t a=DATA)
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> bwplot ( r e o r d e r ( a lg , c o l , med ian )~ c o l | i n s t a n c e , da t a=DATA, a s . t a b l e=TRUE)
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Experimental Analysis

R Pointers

• rstudio cheatsheets https://www.rstudio.com/resources/cheatsheets/
• Data Import Cheat Sheet
• Data Transformation Cheat Sheet
• Data Wrangling https://rpubs.com/bradleyboehmke/data_wrangling https:
//www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

• Data Visualization Cheat Sheet

• ggplot2: Elegant Graphics for Data Analysis. Wickham, Hadley
https://www.springer.com/gp/book/9783319242750 http://ggplot2.org/book/
based on grammar:

• Wickham H (2010) A layered grammar of graphics. J Comput Graph Stat 19(1):3–28
• Wilkinson L (2005) The grammar of graphics. Statistics and computing, 2nd edn. Springer, New

York
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R Notions
• data are stored in data.frame type

> head(DATA)
alg instance hard soft eval time cost

1 3702445 ns1696083 1492 54 14920100 27.65 1492054
2 3702445 neos -1440225 107 46 1070050 1.22 107046
3 3702445 macrophage 0 800 800 0.22 800
4 3702445 iis -pima -cov 0 77 77 0.47 77
5 3702445 ex9 477 2188 4772190 116.34 479188
6 3702445 ex10 974 6591 9746590 120.15 980591

• columns of a data.frame can be of different types, use str() to check this

• an important type for a data frame column is factor. A factor is made by levels

> str(DATA)
’data.frame ’: 60 obs. of 7 variables:
$ alg : Factor w/ 7 levels "3702445","5248915" ,..: 1 1 1 1 1 1 1 1 1 2 ...
$ instance: Factor w/ 9 levels "acc -tight6","bnatt350" ,..: 9 8 7 6 5 4 3 2 1 9 ...
$ hard : int 1492 107 0 0 477 974 1201 152 88 7 ...
$ soft : num 54 46 800 77 2188 ...
$ eval : num 14920100 1070050 800 77 4772190 ...
$ time : num 27.65 1.22 0.22 0.47 116.34 ...
$ cost : num 1492054 107046 800 77 479188 ...
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R Notions

• the library dplyr can be helpful to organize data. See the cheatsheet (In RStudio you find
them from the Help menu).

• data frames can be in wide or long format:

> require(tidyr)
> require(dplyr)
> spread(select(DATA ,instance ,alg ,hard),alg ,hard)

instance 3702445 5248915 5286294 5506044 5736304 6190028 6240996
1 acc -tight6 88 NA 33 468 33 12 1286
2 bnatt350 152 NA 161 183 150 174 1564
3 co -100 1201 NA 162 162 162 808 1193
4 ex10 974 77 200 200 306 107 1731
5 ex9 477 70 162 162 217 75 1474
6 iis -pima -cov 0 0 0 7201 0 0 0
7 macrophage 0 0 0 609 0 0 424
8 neos -1440225 107 22 80 330 75 35 329
9 ns1696083 1492 7 1381 139 3306 46 3211
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R Notions

Rank transformation in dplyr:

HARD_LONG <- HARD_LONG %>% group_by(instance) %>%
mutate(rank=rank(hard ,na.last = TRUE)) %>%
ungroup ()

here group_by does the same job as split

> head(HARD_LONG)
# A tibble: 6 x 4

instance alg hard rank
<fctr > <chr > <int > <dbl >

1 acc -tight6 3702445 88 4.0
2 bnatt350 3702445 152 2.0
3 co -100 3702445 1201 6.0
4 ex10 3702445 974 6.0
5 ex9 3702445 477 6.0
6 iis -pima -cov 3702445 0 3.5
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R: graphics with ggplot2
A grammar for graphics:

• Data that you want to visualise and a set of aesthetic mappings describing how variables in
the data are mapped to aesthetic attributes that you can perceive (eg, the x and y axis and
the colors).
library(ggplot2)
p <- ggplot(HARD_LONG ,aes(x=reorder(alg , rank , median), y=rank))

• Layers made up of geometric elements and statistical transformation.
– Geometric objects, geoms for short, represent what you actually see on the plot: points,
lines, polygons, etc.
– Statistical transformations, stats for short, summarise data in many useful ways. For
example, binning and counting observations to create a histogram, or summarising a 2d
relationship with a linear model.
p <- p + geom_boxplot(aes(fill=alg),width =0.8, stat = "boxplot",

position = position_dodge(width = 0),
colour = I("#3366FF"),outlier.colour = I("#3366FF"))

51



Experimental Analysis

• The scales map values in the data space to values in an aesthetic space, whether it be colour,
or size, or shape. Scales draw a legend or axes, which provide an inverse mapping to make it
possible to read the original data values from the plot.
p <- p + scale_y_continuous(breaks=seq(1, nlevels(HARD_LONG$alg), 1))

• A coordinate system, coord for short, describes how data coordinates are mapped to the plane
of the graphic. It also provides axes and gridlines to make it possible to read the graph. We
normally use a Cartesian coordinate system, but a number of others are available, including
polar coordinates and map projections.
p <- p + coord_cartesian(ylim=c(1,nlevels(HARD_LONG$alg )))

• A faceting specification describes how to break up the data into subsets and how to display
those subsets as small multiples. This is also known as conditioning or latticing/trellising.
p <- p + facet_grid(.~class) # faceting

• A theme which controls the finer points of display, like the font size and background colour.
But trust the defaults.
print(p)
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On a class of instances
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On a class of instances
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Stochastic Dominance
Definition: Algorithm A1 probabilistically dominates algorithm A2 on a problem instance, iff its
CDF is always "below" that of A2, i.e.:

F1(x) ≤ F2(x), ∀x ∈ X
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R code behind the previous plots

We load the data and plot the comparative boxplot for each instance.

> load("TS.class -G.dataR")
> G[1:5,]

alg inst run sol time.last.imp tot.it parz.it exit.it exit.time opt
1 TS1 G-1000 -0.5 -30 -1 1 59 9.900619 5955 442 5955 10.02463 30
2 TS1 G-1000 -0.5 -30 -1 2 64 9.736608 3880 130 3958 10.00062 30
3 TS1 G-1000 -0.5 -30 -1 3 64 9.908618 4877 49 4877 10.03263 30
4 TS1 G-1000 -0.5 -30 -1 4 68 9.948622 6996 409 6996 10.07663 30
5 TS1 G-1000 -0.5 -30 -1 5 63 9.912620 3986 52 3986 10.04063 30
>
> library(lattice)
> bwplot(alg ~ sol | inst ,data=G)

If we want to make an aggregate analysis we have the following choices:
• maintain the raw data,
• transform data in standard error,
• transform the data in relative error,
• transform the data in an invariant error,
• transform the data in ranks.



Experimental Analysis

Maintain the raw data

> par(mfrow=c(3,2),las=1,font.main=1,mar=c(2,3,3,1))
> #original data
> boxplot(sol~alg ,data=G,horizontal=TRUE ,main="Original data")
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Transform data in standard error

> #standard error
> T1 <- split(G$sol ,list(G$inst))
> T2 <- lapply(T1 ,scale ,center=TRUE ,scale=TRUE)
> T3 <- unsplit(T2,list(G$inst))
> T4 <- split(T3 ,list(G$alg))
> T5 <- stack(T4)
> boxplot(values~ind ,data=T5,horizontal=TRUE ,main=expression(paste("Standard error: ",frac(x-bar(x),sqrt(sigma )))))
> library(latticeExtra)
> ecdfplot(~values ,group=ind ,data=T5,main=expression(paste("Standard error:
",frac(x-bar(x),sqrt(sigma )))))

> #standard error
> G$scale <- 0
> split(G$scale , G$inst) <- lapply(split(G$sol , G$inst), scale ,center=TRUE ,scale=TRUE)
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Transform the data in relative error

> #relative error
> G$err2 <- (G$sol -G$opt)/G$opt
> boxplot(err2~alg ,data=G,horizontal=TRUE ,main=expression(paste("Relative error: ",frac(x-x^(opt),x^(opt )))))
> ecdfplot(G$err2 ,group=G$alg ,main=expression(paste("Relative error: ",frac(x-x^(opt),x^(opt )))))
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Transform the data in an invariant error
We use as surrogate of xworst the median solution returned by the simplest algorithm for the graph
coloring, that is, the ROS heuristic.

> #error 3
> load("ROS.class -G.dataR")
> F1 <- aggregate(F$sol ,list(inst=F$inst),median)
> F2 <- split(F1$x,list(F1$inst))
> G$ref <- sapply(G$inst ,function(x) F2[[x]])
> G$err3 <- (G$sol -G$opt)/(G$ref -G$opt)
> boxplot(err3~alg ,data=G,horizontal=TRUE ,main=expression(paste("Invariant error: ",frac(x-x^(opt),x^(worst)-x^(opt )))))
> ecdfplot(G$err3 ,group=G$alg ,main=expression(paste("Invariant error: ",frac(x-x^(opt),x^(worst)-x^(opt )))))
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Transform the data in ranks

> #rank
> G$rank <- G$sol
> split(G$rank , G$inst) <- lapply(split(G$sol , D$inst), rank)
> bwplot(rank~reorder(alg ,rank ,median),data=G,horizontal=TRUE ,main="Ranks")
> ecdfplot(rank ,group=alg ,data=G,main="Ranks")
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> # # Let ’ s m a k e t h e r a n k s of t h e c o l o r s
> T1 <− s p l i t (DATA[ " c o l " ] , DATA[ " i n s t a n c e " ] )
> T2 <− l a p p l y (T1 , r ank , na . l a s t = " k e e p " )
> T3 <− u n s p l i t (T2 , DATA[ " i n s t a n c e " ] )
> DATA$ r a n k <− T3
>
> # # we p l o t t h e r a n k s f o r an a g g r e g a t e a n a l y s i s
> # # r e o d e r s o r t t h e f a c t o r a l g o r i t h m by m e d i a n v a l u e s
> bwplot ( r e o r d e r ( a lg , r ank , med ian ) ~ rank , da t a = DATA)
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Scenarios

A. Single-pass heuristics

B. Asymptotic heuristics
(can be run indefinitely with a chance of continuing to make progress):

Two approaches:

1. Univariate

1.a Time as an external parameter decided a priori
1.b Solution quality as an external parameter decided a priori

2. Cost dependent on running time:
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Scenario B

Asymptotic heuristics

There are two approaches:

1.b. Solution quality as an external parameter decided a priori. The algorithm is halted when
quality is reached.

Deterministic case: A∞ on class Π finds a
solution in running time t.

The performance of A∞ on class Π is the scalar
y = t.

Randomized case: A∞ on class Π finds a
solution in running time T , where T is a
random variable.

The performance of A∞ on class Π is the
univariate Y = T .
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Experimental AnalysisDealing with Censored Data
Asymptotic heuristics, Approach 1.b

B Heuristic Aa stopped before completion or A∞ truncated (always the case)
I Interest: determining whether a prefixed goal (optimal/feasible) has been reached

The computational effort to attain the goal can be specified by a cumulative distribution function
F (t) = P(T < t) with T in [0,∞).

If in a run i we stop the algorithm at time Li then we have a Type I right censoring, that is, we
know either
• Ti if Ti ≤ Li

• or Ti ≥ Li .
Hence, for each run i we need to record min(Ti , Li ) and the indicator variable for observed
optimal/feasible solution attainment, δi = I (Ti ≤ Li ).
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Asymptotic heuristics, Approach 1.b: Example

B An exact vs an heuristic algorithm for the
2-edge-connectivity augmentation problem.

I Interest: time to find the optimum on different instances.
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Scenarios

A. Single-pass heuristics

B. Asymptotic heuristics
(can be run indefinitely with a chance of continuing to make progress):

Two approaches:

1. Univariate

1.a Time as an external parameter decided a priori
1.b Solution quality as an external parameter decided a priori

2. Cost dependent on running time:
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Scenario B

Asymptotic heuristics

There are two approaches:

2. Cost dependent on running time:

Deterministic case: A∞ on π returns a
current best solution x at each observation
in t1, . . . , tk .

The performance of A∞ on π is the profile
indicated by the vector
~y = {x(t1), . . . , x(tk)}.

Randomized case: A∞ on π produces a
monotone stochastic process in solution cost
X (τ) with any element dependent on the
predecessors.

The performance of A∞ on π is the
multivariate ~Y = (X (t1),X (t2), . . . ,X (tk)).
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Example

Scenario:

B 3 heuristics A∞1 , A∞2 , A∞3 on instance π.
B single instance hence no data transformation.
B r runs
I Interest: inspecting solution cost over running time to determine whether the comparison

varies over time intervals

Tools:
• Quality profiles

68



Experimental Analysis

The performance is described by multivariate random variables of the kind
~Y = {Y (t1),Y (t2), . . . ,Y (lk)}.

Sampled data are of the form ~Yi = {Yi (t1),Yi (t2), . . . ,Yi (tk)}, i = 1, . . . , 10 (10 runs per
algorithm on one instance)
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The performance is described by multivariate random variables of the kind
~Y = {Y (t1),Y (t2), . . . ,Y (lk)}.

Sampled data are of the form ~Yi = {Yi (t1),Yi (t2), . . . ,Yi (tk)}, i = 1, . . . , 10 (10 runs per
algorithm on one instance)

Time occasion

C
ol

or
s

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

●●
●

●
●

●
●

●

Novelty

70

80

90

100

●
●

●●
●

●
●

●
● ● ● ● ● ● ● ● ● ●● ●●

Tabu Search

69



Experimental Analysis

The performance is described by multivariate random variables of the kind
~Y = {Y (t1),Y (t2), . . . ,Y (lk)}.

Sampled data are of the form ~Yi = {Yi (t1),Yi (t2), . . . ,Yi (tk)}, i = 1, . . . , 10 (10 runs per
algorithm on one instance)
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Summary

Visualize your data for your analysis and for communication to others

Explore your data:

• make plots: histograms, boxplots, empirical cumulative distribution functions,
correlation/scatter plots

• look at the numerical data and interpret them in practical terms: computation times, distance
from optimum

• look for patterns

All the above both at a single instance level and at an aggregate level.
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Making Plots

http://algo2.iti.uni-karlsruhe.de/sanders/courses/bergen/bergenPresenting.pdf

[Sanders, 2002]

• Should the experimental setup from the exploratory phase be redesigned to increase conciseness or
accuracy?

• What parameters should be varied? What variables should be measured?

• How are parameters chosen that cannot be varied?

• Can tables be converted into curves, bar charts, scatter plots or any other useful graphics?

• Should tables be added in an appendix?

• Should a 3D-plot be replaced by collections of 2D-curves?

• Can we reduce the number of curves to be displayed?

• How many figures are needed?

• Should the x-axis be transformed to magnify interesting subranges?
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• Should the x-axis have a logarithmic scale? If so, do the x-values used for measuring have the
same basis as the tick marks?

• Is the range of x-values adequate?

• Do we have measurements for the right x-values, i.e., nowhere too dense or too sparse?

• Should the y-axis be transformed to make the interesting part of the data more visible?

• Should the y-axis have a logarithmic scale?

• Is it misleading to start the y-range at the smallest measured value?
(if not too much space wasted start from 0)

• Clip the range of y-values to exclude useless parts of curves?

• Can we use banking to 45o?

• Are all curves sufficiently well separated?

• Can noise be reduced using more accurate measurements?

• Are error bars needed? If so, what should they indicate? Remember that measurement errors
are usually not random variables.
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• Connect points belonging to the same curve.

• Only use splines for connecting points if interpolation is sensible.

• Do not connect points belonging to unrelated problem instances.

• Use different point and line styles for different curves.

• Use the same styles for corresponding curves in different graphs.

• Place labels defining point and line styles in the right order and without concealing the curves.

• Give axis units

• Captions should make figures self contained.

• Give enough information to make experiments reproducible.

• Golden ratio rule: make the graph wider than higher [Tufte 1983].

• Rule of 7: show at most 7 curves (omit those clearly irrelevant).

• Avoid: explaining axes, connecting unrelated points by lines, cryptic abbreviations, microscopic
lettering, pie charts
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