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Primal HeuristicsHeuristic Solutions

Different reasons may lead one to choose a heuristic:

• A solution is required rapidly, within a few seconds or minutes.

• The instance is so large and/or complicated that it cannot be formulated as an integer
program (IP) or mixed integer program (MIP) of reasonable size.

• Even though it has been formulated as an MIP, it is difficult or impossible for the
branch-and-cut system to find (good) feasible solutions.

• For certain combinatorial problems such as vehicle routing and machine scheduling, it is easy
to find feasible solutions by inspection or knowledge of the problem structure, and a
general-purpose MIP approach is ineffective.
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Primal Heuristics

In designing and using a heuristic, there are various questions one can ask:

• Should one just accept any feasible solution, or should one ask a posteriori how far it is from
optimal?

• Can one guarantee a priori that the heuristic will produce a solution within ϵ ( or α%) of
optimal?

(A couple of examples of heuristics with worst-case guarantees were given in DM871. Often the
practical behavior of these heuristics is much better than the worst-case behavior, but is dominated
in practice by some other heuristic.)
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Primal HeuristicsPrimal Heuristics

Independent on MIP solvers
• Greedy heuristics
• Local search
• Metaheuristics

no dual bounds nor performance
guarantee

Inside MIP solvers
• Construction heuristics

• Rounding, Shift, Fix
• Dive and Fix
• Neighborhood Rounding
• Feasibility pump

• Improvement heuristics
• Local Branching
• Proximity Search
• Relaxation Induced

Neighborhood Search
(RINS)

• Polishing Heuristic

User defined MIP heuristics
• Relax and Fix
• Large neighborhood search
• Extended formulations
• Cut and solve
• Problem specific heuristics
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Primal HeuristicsLocal search

Reformulation of combinatorial optimization problem as

min
S⊆N

{c(S) | g(S) = 0} ,

g(S) ≥ 0 represents a measure of the infeasibility of set S .
Thus, the constraint v(S) ≥ k can be represented here by g(S) = (k − v(S))+.

For a local search algorithm, we need to define:
• a solution,
• a local neighborhood Q(S) for each solution S ⊆ N,
• an evaluation function f (S), which can either be:

1. just equal to c(S) when S is feasible, and infinite otherwise, or

2. a composite function of the form c(S) + αg(S) consisting of a weighted combination of
the objective function value and a positive multiple α of the infeasibility measure for S .
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Primal HeuristicsInside-MIP Construction Heuristics

max{cx | x ∈ X ⊆ Zn}

generalizable to max{cx | x ∈ X ⊆ Zn × Rp}.
Starting from an arbitrary point, the origin or some known point in the feasible LP region P:

1. Rounding. Select a variable xj that should be integer and round to the nearest integer, denoted
⌈xj⌋.

2. Shift. Shift xj to xj ± α if this decreases infeasibility.
3. Fix. Set xj to some value x ′j ∈ Z1 (using preprocessing or constraint programming to tighten

bounds due to the fixing).

If repetition of these steps does not lead to a feasible solution,
• Solve a linear program with the variables that have been fixed and round the solution.

If this still does not lead to a feasible solution:
• After possibly fixing more variables based on the previous step, solve a mixed integer program

for a limited amount of time.
Each of these steps is possibly repeated many times.
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Primal HeuristicsImprovement Heuristics
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Primal HeuristicsUser-Defined MIP heuristics
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In practice, we often extend this idea by
breaking up the set of variables into
more than two subsets.

For instance, given a problem involving
T time periods, we might break up the
interval into K subintervals [tk , τk ] with
t1 = 1,τk = T , and tk+1 = τk + 1 for
k = 1, . . . ,K − 1 leading to a
corresponding partition of the variables.
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Primal HeuristicsCut and Solve

• Iteration ≡ node in search path
• piercing cut a cut that removes at least one feasible solution from the original (unrelaxed)

problem solution space.
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27



Primal HeuristicsGeneric piercing cut procedure
• Partition binary variables in a small set S and a large set L.

• sparse problem solved on the set S
while setting variables in L to zero.∑

xi∈L

xi = 0

• piercing cut∑
xi∈L

xi ≥ 1

• the assumption is that being sparse in feasible (integer) solutions, this problem should be
easier to solve.

• general guidelines to select S :
• Each piercing cut should remove the solution to the current relaxed problem so as to prevent this

solution from being found in subsequent iterations.
• The space that is removed by the piercing cut should be adequately sparse, so that the optimal

solution can be found relatively easily.
• The piercing cuts should attempt to capture an optimal solution for the original problem. The

algorithm will not terminate until an optimal solution has been cut away and consequently made
the incumbent.

• In order to guarantee termination, each piercing cut should contain at least one feasible solution
for the original, unrelaxed, problem. 28



Primal HeuristicsGeneric Cut and Solve

• Rationale: Reduced cost is a lower bound on the increase of the LP solution cost if the value
of the variables is increase by one unit. Hence variables with reduced costs of low absolute
value are likely to disrupt the least the objective function value.

• α should be small enough to leave the sparse problem easy to solve and large enough to admit
a feasible an possibly optimal solution

• note that since all variables currently in basis have reduced cost of null then the current
optimal solution will be part of the sparse problem and cut away from the rest.
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