DM872
Mathematical Optimization at Work

Heuristic Solutions

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Primal Heuristics

Outline

1. Primal Heuristics

. Primal Heuristics
Outline

1. Primal Heuristics

Heuristic Solutions Primal Heurietcs

Different reasons may lead one to choose a heuristic:

® A solution is required rapidly, within a few seconds or minutes.

® The instance is so large and/or complicated that it cannot be formulated as an integer
program (IP) or mixed integer program (MIP) of reasonable size.

® Even though it has been formulated as an MIP, it is difficult or impossible for the
branch-and-cut system to find (good) feasible solutions.

® For certain combinatorial problems such as vehicle routing and machine scheduling, it is easy
to find feasible solutions by inspection or knowledge of the problem structure, and a
general-purpose MIP approach is ineffective.

Primal Heuristics

In designing and using a heuristic, there are various questions one can ask:

® Should one just accept any feasible solution, or should one ask a posteriori how far it is from
optimal?

® Can one guarantee a priori that the heuristic will produce a solution within € (or %) of
optimal?
(A couple of examples of heuristics with worst-case guarantees were given in DM871. Often the
practical behavior of these heuristics is much better than the worst-case behavior, but is dominated
in practice by some other heuristic.)

Primal Heuristics

Independent on MIP solvers Inside MIP solvers

® Greedy heuristics ® Construction heuristics

[)
® | ocal search

. . []
® Metaheuristics

no dual bounds nor performance

guarantee °

Rounding, Shift, Fix
Dive and Fix
Neighborhood Rounding
Feasibility pump

® |Improvement heuristics

Local Branching
Proximity Search

Relaxation Induced
Neighborhood Search
(RINS)

Polishing Heuristic

Primal Heuristics

User defined MIP heuristics

Relax and Fix

Large neighborhood search
Extended formulations
Cut and solve

Problem specific heuristics

G reedy H eu ristics Primal Heuristics

A Greedy Heuristic

1. Set S° = ¢ (start with the empty set). Set t = 1.

2. Setj, = arg min% (choose the element whose additional cost per
unit of resource is minimum).

3. If the previous solution S*! is feasible, i.e. v(S"') >k, and ¢ (S U {j,}) >
c (S'1), stop with S¢ = 51,

4. Otherwise set S' = S™1 U {j,}.

. If t = n, stop with S¢ = N.

6. Otherwise set t « ¢t + 1, and return to 2.

un

Primal Heuristics

Local search

Reformulation of combinatorial optimization problem as

min {c(S) | £(5) = 0}.

g(S) > 0 represents a measure of the infeasibility of set S.
Thus, the constraint v(S) > k can be represented here by g(S) = (k — v(S))".

For a local search algorithm, we need to define:
® 3 solution,
® a local neighborhood Q(S) for each solution S C N,

® an evaluation function 7(S), which can either be:
1. just equal to c(S) when S is feasible, and infinite otherwise, or

2. a composite function of the form ¢(S) + ag(S) consisting of a weighted combination of
the objective function value and a positive multiple o of the infeasibility measure for S.

Primal Heuristics

Inside-MIP Construction Heuristics

max{cx | x € X CZ"}

generalizable to max{cx | x € X C Z" x RP}.
Starting from an arbitrary point, the origin or some known point in the feasible LP region P:

1. Rounding. Select a variable x; that should be integer and round to the nearest integer, denoted
[x5].
2. Shift. Shift x; to x; £ « if this decreases infeasibility.

3. Fix. Set x; to some value XJ/ € 7' (using preprocessing or constraint programming to tighten
bounds due to the fixing).

If repetition of these steps does not lead to a feasible solution,
® Solve a linear program with the variables that have been fixed and round the solution.
If this still does not lead to a feasible solution:

® After possibly fixing more variables based on the previous step, solve a mixed integer program
for a limited amount of time.

Each of these steps is possibly repeated many times.

Primal Heuristics

A Dive-and-Fix Heuristic
We suppose that we have a 0-1 problem. Given an LP solution x*, let
F={: xj* & {0,1}} be the set of 0-1 variables that are fractional.

Initialization. Take the LP solution x* at some node.
Basic Iteration. As long as F # {3,
Leti =arg ﬂ%lllgl{ min[x;.", 1-— x;;."]} (find the variable closest to integer).
If x* < 0.5, fixx; = 0 (if close to 0, fix to 0).
Otherwise set x; = 1 (if close to 1, fix to 1).
Solve the resulting LP.
If the LP is infeasible, stop (the heuristic has failed).
Otherwise let x* be the new LP solution.
Termination. If F = @, x* is a feasible mixed integer solution.

10

The Neighborhood Rounding Heuristic
Given an optimal solution of the LP relaxation x*, solve the IP

max{cx : x € X, [%’."J <x < |'xj*] for j e N}.

11

Primal Heuristics

The Feasibility Pump Heuristic

Initialization. Let x* = x'* be an optimal LP solution.

Iteration. Round to obtain an integer point X = [x*].

If% ¢ P, project onto the feasible region P.

If the IP is in the form max{ex : Ax £ b, # <x < k,x € Z"}, the projection prob-

lem: min{ Zjbuc_i —%| : x € P} can be formulated as the linear program:

min Y -£) + k-x)+ Y 4
JeB:x=¢; €B: %=k Jjrt<i<k;
Ax

1
]

4

v A
% o

-3
p

v

A

k

IA

X

where variables 6; = |x; — J’Ej| for all j are used to model the integer variables lying
between their bounds. Let z be an optimal solution.
Set x* = z and repeat.

12

Primal Heuristics

Improvement Heuristics

A Local Branching Heuristic
Given x* € X, solve an IP in which the feasible solutions lie in a small neighbor-
hood of x*. Specifically if X C {0,1}", solve the IP:

ma.x{cx:xeXn{x: Z x; + E (1—xj)5k}},
j:x;:O j:xj“=1

where k is a small integer.

13

Primal Heuristics

A Proximity Search Heuristic
Again we suppose that x* € X c {0,1}" is given. Selecting an improvement
parameter § > 0, the idea is to find a feasible solution that improves on the best

available solution by at least and is as close as possible to the starting solution
x*. This leads to the IP:

min(Z X + E 1 -x))

j:xJ‘:O j:x}“:l
n
&
CX; Scx* —6

=l
xeX.

14

Primal Heuristics

A Relaxation Induced Neighborhood Search (RINS) Heuristic
Given a feasible solution x* € X and an optimal LP solution x'*,let F={j €N :
X = ijP}. Solve the IP:

max{cx:xeXn{x:xJ:;g;.*forjeF}}.

15

Primal Heuristics

A Polishing Heuristic

Motivated by genetic algorithms, a list of at most k best solutions is stored. Two or
more solutions {x!, ...,x"} are selected and then the idea is to fix the set F = {j €
[1,n] : x1 = x‘ for t =1,...,r}. Then again the IP

max{cx:xeXn{x:;g:;g;*forjeF}}

is solved. Here the selection of a pair of solutions is obtained by choosing a first
solution randomly and then randomly choosing a second solution among the bet-
ter solutions on the list. Mutations are introduced by randomly fixing only a subset
of the variables in F.

16

User-Defined MIP heuristics primal Heurisics

Relax-and-Fix Heuristic

Here we suppose that there is a partition of the variables and the problem can be
written in the form:

Z=max{c'x! +c?x* : Alx! + A =b,x' € Z}', X2 € Z).
The steps of the heuristic are then:

1. Relax. Solve the relaxation
Z = max c'x' + &2
(MIP1) Alx! + A2 =)
x' e Z}, x> eR}
in which the integrality of the x? variables is dropped. Let ", %) be the corre-
sponding solution.

2. Fix. Fix the important variables x! at their values in MIP1, and solve the
restriction 7 = max clyl + e2x2
B Alxl + A% = b
xt =X
PLezp

(MIP2)

Let ()_cl.icz) be the corresponding solution if MIP2 is feasible.
. Heuristic Solution. The heuristic solutionisx¥ = (El,iz)wiﬂlg =exl<Z<Z.

w

17

In practice, we often extend this idea by
breaking up the set of variables into
more than two subsets.

For instance, given a problem involving

T time periods, we might break up the
interval into K subintervals [tx, 7] with !
ty =17 =T, and t, 1 = 74 + 1 for
k=1,...,K —1leading to a 2

corresponding partition of the variables.)
HIPy

Arpg

HIPs

FixeEDX

44

(WTEGRA (.

€ ¢ 20 22 264 2 2 3o

FRACTIOAL

A more general version is obtained by working with triples [t;, o}, 7,] with t; <
oy £ 7y, by = 63y + 1. In the kth step, we solves the MIP

max{ex 1 X € X, =x forj=1,..,0,y,

X € Z, forj =t ..., 7, X% € R} forj > 7}

with optimal solution x* and then setx' = x* forj =1, ..., 0.

Thus, for an instance with 30 periods in which we allow 10 variables to be integer
in each restricted MIP and then fix the values of the first 6 integer variables, the cor-
responding values for the 5 MIPs are as follows: [1, 6,10], [7,12,16], [13,18,22],
[19,24, 28], and [25, 30, 30].

© 2 4 £ 8 1o {2 4 (6 1F 20 22 25 2 28 3e

wutl

[—
Ca o [
P2
t, 0, 2
HP3 [EEE———
€ 75 =
HIP,
& T 2

HPS

—

FIXED INTEGRAL FRACToAL

Primal Heuristics

Large Neighborhood Search Heuristic

This is a local search heuristic. To optimize over a large neighborhood either MIP
or a specialized algorithm is used. Typically, the MIP is run until an improved solu-
tion is found or a time limit is reached. Given the problem in the form max{cx :
x € X} and a feasible solution x* € X, the basic idea is to define a subset of vari-
ables V C N whose values it is hoped to improve by solving the MIP:

max{cx : xeX,xj=xj* for jeN\V}

For example after finding a feasible solution to the 30 period instance by
Relax-and-Fix, one possibility is to set V = [7,12] to see if the solution between
periods 7 and 12 can be improved. Alternatively, if the instance involved five
items, we might fix the solution of items 1-4 and see if the solution of item 5 could

20

Primal Heuristics

Extended Formulation Heuristics

Several problems can be formulated either in the original variables max{cx : x €
P n Z"} or with an extended formulation max{cx + 0w : (x, w) € QN (Z" x RP)}
where the first formulation provides very weak dual bounds, whereas the second
provides good dual bounds, but is so large that it is only practical to solve its LP
relaxation.

Here, the first option is to reduce the size of the extended formulation. Use the
optimal LP solution (x'F, w'F) to fix sufficient variables F, C {j € [1,n] : x;“P €
Z.,} so that the restricted MIP

max{ex + 0w : x, =ijP for je F,,(x,w) € QN (7" x RP)}

can be run to produce hopefully good feasible solutions.
A second option is to fix sufficient variables F, so that the restricted original
formulation

max{ex : x; =xjLP for jeF,xe PnZ"}

produces good quality feasible solutions.

21

Cut and Solve Primal Heuristics

® |teration = node in search path

® piercing cut a cut that removes at least one feasible solution from the original (unrelaxed)
problem solution space.

algorithm cut_and_solve (IP)
select cut
find optimal feasible solution in space removed by cut
update best if necessary
add cut to problem
find lower bound
if (lower bound >= best) return best
otherwise, repeat

25

Exa m p I e Primal Heuristics

(b)

Z 4 ¥
min = —_ =] o
y 5x
subject to Y
x>0 ;- - - - x‘
(d)
y<3 y " "
+3 >6
2e>2
YT5EZS s
B ; <l
2o
YTg
5 1
YT 1
xel

Exa m p I e Primal Heuristics

= @ (®)
y D./ y :)/\
X x
P () (d)
y £ i y

X
(@
| Z

27

Primal Heuristics

Generic piercing cut procedure

® Partition binary variables in a small set S and a large set L.

e sparse problem solved on the set S e piercing cut
while setting variables in L to zero.
LTS

E x;=20 x; €L

x;elL

® the assumption is that being sparse in feasible (integer) solutions, this problem should be
easier to solve.
® general guidelines to select S:
® Each piercing cut should remove the solution to the current relaxed problem so as to prevent this
solution from being found in subsequent iterations.
® The space that is removed by the piercing cut should be adequately sparse, so that the optimal
solution can be found relatively easily.
® The piercing cuts should attempt to capture an optimal solution for the original problem. The
algorithm will not terminate until an optimal solution has been cut away and consequently made
the incumbent.
® In order to guarantee termination, each piercing cut should contain at least one feasible solution
for the original, unrelaxed, problem.

28

Primal Heuristics

Generic Cut and Solve

algorithm generic_cut_and_solve (BIP)
relax integrality and solve LP
if (LP solution >= best) return best
let S = {variables with reduced costs <= alpha}
find optimal feasible solution in S
update best if necessary
if (LP solution >= best) return best
add (sum of variables not in S >= 1) to BIP
repeat

® Rationale: Reduced cost is a lower bound on the increase of the LP solution cost if the value
of the variables is increase by one unit. Hence variables with reduced costs of low absolute
value are likely to disrupt the least the objective function value.

® « should be small enough to leave the sparse problem easy to solve and large enough to admit
a feasible an possibly optimal solution

® note that since all variables currently in basis have reduced cost of null then the current
optimal solution will be part of the sparse problem and cut away from the rest.

	Primal Heuristics

