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We look at Farkas’ Lemma with two objectives:

• (giving another proof of strong duality)

• understanding a certificate of infeasibility
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Farkas’ Lemma
Beyond the SimplexFarkas’ Lemma

Theorem (Farkas’ Lemma)

Let A ∈ Rm×n and b ∈ Rm. Then,

either I . ∃x ∈ Rn : Ax = b and x ≥ 0

or II . ∃y ∈ Rm : yTA ≥ 0T and yTb < 0

Easy to see that both I and II cannot occur together:

(0 ≤) yTAx = yTb (< 0)
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Beyond the SimplexGeometric interpretation of Farkas’ Lemma

Linear combination of ai with nonnegative terms generates a convex cone:

{λ1a1 + . . .+ λnan, | λ1, . . . , λn ≥ 0}

Polyhedral cone: C = {x | Ax ≤ 0}, intersection of many ax ≤ 0
Conic hull of rays pi = {λiai , λi ≥ 0}

Either point b lies in convex cone C
or ∃ hyperplane h passing through point 0 h = {x ∈ Rm : yTx = 0}

for y ∈ Rm such that all vectors a1, . . . , an (and thus C ) lie on one
side and b lies (strictly) on the other side (ie, yTai ≥ 0,∀i = 1 . . . n
and yTb < 0).
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Theorem (Farkas’ Lemma)

The inequality cTx ≥ c0 is valid for the non-empty polyhedron P := {x ≥ 0 | Ax = b}
if and only if y ∈ Rm exists such that:

cT ≥ yTA

c0 ≤ yTb

⇐= (sufficiency) (used in Gomory cuts)

cTx ≥ yTAx = yTb ≥ c0

=⇒ (necessity)
by simplex algorithm similar to our proof of the strong duality theorem
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Corollary

(i) Ax = b has sol x ≥ 0 ⇐⇒ ∀y ∈ Rm with yTA ≥ 0T , yTb ≥ 0
(ii) Ax ≤ b has sol x ≥ 0 ⇐⇒ ∀y ≥ 0 with yTA ≥ 0T , yTb ≥ 0
(iii) Ax ≤ 0 has sol x ∈ Rn ⇐⇒ ∀y ≥ 0 with yTA = 0T , yTb ≥ 0
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Farkas’ Lemma provides a way to certificate infeasibility.

Theorem
Let Ax = b, x ≥ 0.
Given a certificate y∗ it is easy to check the conditions (by linear algebra):

ATy∗ ≥ 0
by∗ < 0

Why would y∗ be a certificate of infeasibility?
Proof (by contradiction)
Assume, ATy∗ ≥ 0 and by∗ < 0.
Moreover assume ∃x∗: Ax∗ = b, x∗ ≥ 0,then:

(≥ 0) (y∗)TAx∗ = (y∗)Tb (< 0)

Contradiction
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General form:

max cT x
A1x = b1
A2x ≤ b2
A3x ≥ b3

x ≥ 0

infeasible ⇔ ∃y∗

bT1 y1 + bT2 y2 + bT3 y3 > 0
AT

1 y1 + AT
2 y2 + AT

3 y3 ≤ 0
y2 ≤ 0
y3 ≥ 0

Example

max cT x
x1 ≤ 1
x1 ≥ 2

bT1 y1 + bT2 y2 > 0
AT

1 y1 + AT
2 y2 ≤ 0
y1 ≤ 0
y2 ≥ 0

y1 + 2y2 > 0
y1 + y2 ≤ 0

y1 ≤ 0
y2 ≥ 0

y1 = −1, y2 = 1 is a valid certificate.
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• Observe that it is not unique!

• It can be reported in place of the dual solution because same dimension.

• To repair infeasibility we should change the primal at least so much as that the certificate of
infeasibility is no longer valid.

• Only constraints with yi ̸= 0 in the certificate of infeasibility cause infeasibility

15



Farkas’ Lemma
Beyond the SimplexDuality: Summary

• Derivation:
1. bounding
2. multipliers
3. recipe
4. Lagrangian

• Theory:
• Symmetry
• Weak duality theorem
• Strong duality theorem
• Complementary slackness theorem
• Farkas’ Lemma:

Strong duality + Infeasibility certificate

• Dual Simplex
• Economic interpretation
• Geometric Interpretation
• Sensitivity analysis
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Advantages of considering the dual formulation:

• proving optimality (although the simplex tableau can already do that)

• gives a way to check the correctness of results easily

• alternative solution method (ie, primal simplex on dual)

• sensitivity analysis

• solving P or D we solve the other for free

• certificate of infeasibility
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• Ellipsoid method: cannot compete in practice but weakly polynomial time (Khachyian, 1979)
• Interior point algorithm(s) (Karmarkar, 1984) competitive with simplex and polynomial in

some versions

• affine scaling algorithm (Dikin)

• logarithmic barrier algorithm (Fiacco and McCormick) ≡ Karmakar’s projective method

1. Start at an interior point of the feasible region

2. Move in a direction that improves the objective function value at the fastest possible rate
while ensuring that the boundary is not reached

3. Transform the feasible region to place the current point at the center of it
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• because of patents reasons, now mostly known as barrier algorithms

• one single iteration is computationally more intensive than the simplex (matrix calculations,
sizes depend on number of variables)

• particularly competitive in presence of many constraints (eg, for m = 10, 000 may need less
than 100 iterations)

• bad for post-optimality analysis ⇝ crossover algorithm to convert a solution of barrier method
into a basic feasible solution for the simplex

22


	Farkas' Lemma
	Beyond the Simplex

