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Theory
ExampleInterior Point Methods

Interior point methods in linear programming are classified as:

• central path methods (or central trajectory methods),
• potential reduction methods, and
• affine scaling methods,

and for almost every approach one can consider

• a primal version,
• a dual version,
• a primal–dual version, or
• a self-dual version.
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• affine scaling by Dikin

• logarithmic barrier algorithm by Fiacco and McCormick

• ellipsoid algorithm by Khachian

• projective method by Karmarkar ≡ logarithmic barrier

• primal-dual logarithmic barrier

• primal–dual barrier algorithm, combined with Mehrotra’s predictor–corrector method

Applied with success also to semidefinite programming and other important classes of optimization
problems, such as convex quadratic programming.
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• Concept 1: Shoot through the interior of the feasible region toward an optimal solution.

• Concept 2: Move in a direction that improves the objective function value at the fastest
possible rate.

• Concept 3: Transform the feasible region to place the current trial solution near its center,
thereby enabling a large improvement when concept 2 is implemented.
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maximize cTx
subject to Ax = b

x ≥ 0

Two-phase method:
• Phase I uses only the feasibility direction
• Phase II uses only the optimality direction

Phase II
We assume that we have a feasible initial starting point, x0 that lies in the strict interior of the
feasible set. That is:

Ax0 = b and x0 > 0
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• If it is close to a “wall”, the overall increase in one step will be small,

• scale the variables in the problem so that the current feasible solution is far from the walls,
compute the step direction as the projected gradient in the scaled problem, and then translate
this direction back into the original system.

• scale each variable in such a manner that its initial value gets mapped to 1. That is, for each
j = 1, 2, . . . , n, we introduce new variables given by

ξj =
xj
x0
j

=⇒ xj = x0
j ξj

In matrix notation:

x = X 0ξ

under this change of variables, the initial solution x0 gets mapped to the vector e of all ones,
which is at least one unit away from each wall.
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After substitution:

maximize cTX 0ξ

subject to AX 0ξ = b
ξ ≥ 0

It is a linear programmming problem in standard form with constraint matrix AX 0 and vector of
objective function coeffcients (cTX 0)T = X 0c (since X 0 is diagonal matrix).

We can determine the steepest ascent direction applying what seen in the previous slides:

∆ξ =
(
I − X 0AT (AX 02

AT )−1AX 0
)
X 0c .

and

ξ1 = ξ0 +∆ξ
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Transforming the new point ξ1 back into the original unscaled variables, we get a new point x1:

x1 = X 0ξ1 = X 0(e +∆ξ) = x0 + X 0∆ξ

The difference between x1 and x0 is the step direction in the original variables. Denoting this
difference by ∆x , we see that:

∆x = X 0 (I − X 0AT (AX 2
0A

T )−1)X 0c =

= (E − EAT (AEAT )−1AE )c

where E = X 02.
This expression for ∆x is called affine-scaling step direction.

Recall that we worked with ∥ ∆x ∥= 1. We can then choose step lengths in such a manner as to
ensure “strict” feasibility of each iteration.
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At iteration k :
1. Centering Let D = X k = Diag(xk). Rescale the problem to center the current interior feasible

solution by letting Ã = AD, c̃T = cTD. Hence, ξk = D−1xk = e, the vector consisting of all
1’s. Note that Ãξk = b.

2. Search Direction Computation For the rescaled problem, project the steepest ascent direction
c̃T onto the null space of the constraint matrix Ã, resulting in the search direction
∆ξ = (I − ÃT (ÃÃT )−1Ã)c̃ .

3. Step Length Add a positive multiple θ of the search direction ∆ξ to the scaled interior feasible
point, by computing ξk+1 = e + θ∆ξ. If ∆ξ ≤ 0, then ξk+1, and hence xk+1, can increase
without bound; stop the algorithm with an unbounded solution. Otherwise, because Ã∆ξ = 0
and Ãξk+1 = b, then θ must be chosen to ensure that ξk+1 > 0, avoiding the border. For any
constant α such that 0 < α < 1, the update ξk+1 = e +

(
α

minj ∆ξj

)
∆ξ suffices.

4. Optimality Test Unscale the problem, setting xk+1 = Dξk+1. Test xk+1 for optimality by
checking whether ∥ xk+1 − xk ∥ is small. If xk+1 is optimal, stop the algorithm. Otherwise,
return to Step 1 with feasible interior point solution xk+1.
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max z = x1 + 2x2

x1 + x2 ≤ 8
x1 ≥ 0, x2 ≥ 0

In equational standard form:

max z = x1 + 2x2

x1 + x2 + x3 = 8
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0
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Watch out the change of
notation:

x̃ = ξ

cp = ∆ξ
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Projection matrix:

P = (I − ÃT (ÃÃT )−1Ã)

∆ξ = P c̃ = c̃ − ÃT (ÃÃT )−1Ãc̃

Solved by:

• Ãc̃ = v
• w = (ÃÃT )−1v solved as (ÃÃT )w = v
• c̃ − ÃTw
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