DM587

Scientific Programming

Affine Scaling Method

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Theory

Outline e

1. Theory

2. Example

Theory

Outline e

1. Theory

Theory

Interior Point Methods

Interior point methods in linear programming are classified as:

® central path methods (or central trajectory methods),
® potential reduction methods, and

® affine scaling methods,

and for almost every approach one can consider

® 3 primal version,
® 3 dual version,

® 3 primal—dual version, or

a self-dual version.

Theory

affine scaling by Dikin

logarithmic barrier algorithm by Fiacco and McCormick

ellipsoid algorithm by Khachian

® projective method by Karmarkar = logarithmic barrier

primal-dual logarithmic barrier

® primal—dual barrier algorithm, combined with Mehrotra's predictor—corrector method

Applied with success also to semidefinite programming and other important classes of optimization
problems, such as convex quadratic programming.

Theory

Interior point algorithm with affine scaling

® Concept 1: Shoot through the interior of the feasible region toward an optimal solution.

® Concept 2: Move in a direction that improves the objective function value at the fastest
possible rate.

® Concept 3: Transform the feasible region to place the current trial solution near its center,
thereby enabling a large improvement when concept 2 is implemented.

Theory

maximize ¢’ x
subject to Ax = b
x>0

Two-phase method:
® Phase | uses only the feasibility direction

® Phase |l uses only the optimality direction

Phase
We assume that we have a feasible initial starting point, xq that lies in the strict interior of the
feasible set. That is:

Axg = b and X0 >0

Hence, the steepest ascent direction will almost surely cause a move to infeasible
points. This is also clear algebraically. Indeed,
A2+ Az) = Ax® + AAz = b+ Ac# b
(unless Ac = () which is not likely).
To see how to find a better direction, let us first review in what sense the gradient
is the steepest ascent direction. The steepest ascent direction is defined to be the
direction that gives the greatest increase in the objective function subject to the

constraint that the displacement vector has unit length. That is, the steepest ascent

direction is the solution to the following optimization problem:
maximize ¢! (2 + Ax)
@12) subjectto || Ax||? = 1.

We can solve this problem using Lagrange multipliers. Indeed, if we let A denote
the Lagrange multiplier for the constraint, the problem becomes

glldj\(eT (2 + Ax) — MAzT Az —1).
Differentiating with respect to Az and setting the derivative to zero, we get
c—2)\Ax =10,
which implies that .

Ar=—cxec.

2X

Then differentiating the Lagrangian with respect to A and setting that derivative to
zero, we see that

|Az|*—1=0,
which implies that
[|Az|| = £1.
Hence, the steepest ascent direction points in the direction of either c or its negative.

Since the negative is easily seen not to be an ascent direction at all, it follows that
the steepest ascent direction points in the direction of ¢.

The problem with the steepest ascent direction is that it fails to preserve feasi-
bility. That is, it fails to preserve the equality constraints Ax = b. To remedy this
problem, let’s add these constraints to (21.2) so that we get the following optimiza-
tion problem:

maximize % (20 + Ax)
subject to |Az||®> =1
A(z° + Az) =b.
Again, the method of Lagrange multipliers is the appropriate tool. As before, let A
denote the Lagrange multiplier for the norm constraint, and now introduce a vector
y containing the Lagrange multipliers for the equality constraints. The resulting
unconstrained optimization problem is

max (2% 4+ Az) — MAzTAz — 1) — yT(A(2" + Ax) — b).
E T

max el(a + Ax) = MAzTAz — 1) — yT(A(z" + Az) — b).
z, Ay

Differentiating this Lagrangian with respect to Ax, A, and y and setting these deriva-
tives to zero, we get
¢ =2 Az — ATy =0
IAz? 1 =0
Az + Az) —b=0.
The second equation tells us that the length of Ax is one. Since we are interested
in the direction of Ax and are not concerned about its length, we ignore this second
equation. The first equation tells us that Ax is proportional to ¢ — A%y, and again,

since we aren’t concerned about lengths, we put A = 1/2 so that the first equation
reduces to

(21.3) Ar=c— ATy.
Since Ax" = b, the third equation says that
AAz = 0.
Substituting (21.3) into this equation, we get
Ac— AATy =0,

which, assuming that AA” has full rank (as it should), can be solved for y to get
y=(AAT) Ae.

Now, substituting this expression into (21.3), we see that
Ar=c— AT(AAT) ! Ac.
It is convenient to let P be the matrix defined by
P=1-AT(AAT) 1A
With this definition, Ax can be expressed succinctly as
Az = Pe.

We claim that P is the matrix that maps any vector, such as ¢, to its orthogonal
projection onto the null space of A. To justify this claim, we first need to define some
of the terms we've used. The null space of A is defined as {d € R™ : Ad = 0}. We
shall denote the null space of A by N(A). A vector ¢ is the orthogonal projection
of c onto N(A) if it lies in the null space,

ce N(A),
and if the difference between it and ¢ is orthogonal to every other vector in N(A).
That is,
dT (e —2) =0, forall d € N(A).
Hence, to show that Pc is the orthogonal projection of ¢ onto the null space of A,
we simply check these two conditions. Checking the first, we see that
APe = Ac — AAT(AAT) " Ae,
which clearly vanishes. To check the second condition, let d be an arbitrary vector
in the null space, and compute
d¥(c — Pe) = dTAT(AAT) 1 Ac,

which also vanishes, since d¥ AT = (Ad)T = 0. The orthogonal projection Pc is
shown in Figure 21.1.

. Theor,
Scaling .

® |f it is close to a "wall”, the overall increase in one step will be small,

® scale the variables in the problem so that the current feasible solution is far from the walls,
compute the step direction as the projected gradient in the scaled problem, and then translate

this direction back into the original system.

® scale each variable in such a manner that its initial value gets mapped to 1. That is, for each
j=1,2,...,n, we introduce new variables given by

0
=" = Xj = X; &

In matrix notation:

x = X%
under this change of variables, the initial solution x; gets mapped to the vector e of all ones,

which is at least one unit away from each wall.
15

Theory

16

Theory

After substitution:
maximize ¢’ X°¢
subject to AX°¢€ =b

£§>0

It is a linear programmming problem in standard form with constraint matrix AX® and vector of
objective function coeffcients (c” X%)7 = X% (since X° is diagonal matrix).

We can determine the steepest ascent direction applying what seen in the previous slides:
AE = (/ - XOAT(AxozAT)*lAX‘)) XCc.

and

€ =€+ n¢

17

Theory

Transforming the new point &' back into the original unscaled variables, we get a new point x*

xt = X% = X%(e + Ag) = x° + X°A¢

The difference between x' and x° is the step direction in the original variables. Denoting this
difference by Ax, we see that:
Ax = X0 (1 = X°AT(AXGAT) ™) X% =
= (E— EAT(AEAT)'AE)c

where £ = X0%,

This expression for Ax is called affine-scaling step direction.

Recall that we worked with || Ax ||= 1. We can then choose step lengths in such a manner as to
ensure “strict” feasibility of each iteration.

19

Theory

Affine-Scaling Algorithm

At iteration k:
1. Centering Let D = X* = Diag(x*). Rescale the problem to center the current interior feasible
solution by letting A = AD, é" = c¢” D. Hence, £¥ = D~ 'x* = e, the vector consisting of all
1's. Note that A¢X = b

2. Search Direction Computation For the rescaled problem, project the steepest ascent direction
¢" onto the null space of the constraint matrix A, resulting in the search direction
A = (I — AT(AAT)1A)e.

3. Step Length Add a positive multiple 6 of the search direction A& to the scaled interior feasible
point, by computing £<t1 = e + AL, If A& <0, then £XF1, and hence x**!, can increase
without bound; stop the algorithm with an unbounded solution. Otherwise, because AAE = 0
and A¢k+1 = b, then 0 must be chosen to ensure that £t > 0, avoiding the border. For any

constant o such that 0 < a < 1, the update £7! = e + <mm AT) AE suffices.
4. Optimality Test Unscale the problem, setting x**1 = D&*+1. Test x**! for optimality by

checking whether || x**1 — x* || is small. If x*** is optimal, stop the algorithm. Otherwise,
return to Step 1 with feasible interior point solution x**!.

21

Theory

O Utl i ne Example

2. Example

Theory

Example Eramle

max z = x1 + 2xo S 00 i
xp+x2 <8
x1 20, >0

In equational standard form:

max z = x1 + 2xo
X1 —|—X2—|—X3:8
x120,x%>0,x3>0

Affine-Scaling Method Eramle

Watch out the change of

1. Given the current trial solution (x;, ¥s. ..., x,), set notation:
y 0 0 0 .
XxX=¢€

0 x, 0 = 0 N
D=|0 0 x - O cp = AL

0 0 0o oy

n
2. Calculate A = AD and € = De.
3. Calculate P =1 — AT(AA") 'A and ¢, = PE.
4. Identify the negative component of ¢, having the largest absolute value, and set v equal
to this absolute value. Then calculate
1

1 @
X= + ¢,
: v

1

where « is a selected constant between 0 and 1 (for example, a = 0.5).

5. Calculate x = DX as the trial solution for the next iteration (step 1). (If this trial solu-
tion is virtually unchanged from the preceding one, then the algorithm has virtually
converged to an optimal solution, so stop.)

24

(0. 8. 0) optimal

2.3.3)[@

Theory
Example

25

200
D=[{0 2 0]
0 0 4

The rescaled variables then are the components of

% 0 0 o

1 o)

=D 'x=|0 3 0fxn B
1|L%s X5

0 3 3

In these new coordinates, A and ¢ have become

200
A=AD=1[1 1 11|0 2 0|=[2 2 4],
0 0 4
2.0 0ff1 2
€=Dc=[0 2 0f[2|=]4]|
0 0 4]|0 0
Therefore, the projection matrix is
P=1-A"AA") 'A
100 2 2 !
=10 1 0]—=|2[([2 2 4]|2 2
0 0 1 4 4

P=1-ATAA)'A
100 2

=lo 1 o[22
00 1 4
100 144 8
=0 1 0 544 8| =
0 01 8 8 16

so that the projected gradient is

s
I
I B
¢, =Pr=|-l
T

Define v as the absolute value of the negative
value, so that v = | —2| =2 in this case. C
algorithm now moves from the current trial
trial solution

component of ¢, having the largest absolute
onsequently, in the current coordinates, the
solution (X, X5, ¥3) = (1, 1, 1) to the next

5

= B2 e

as shown in Fig. 8.5. (The definition of v has been chosen to make the smallest compo-
nent of X equal to zero when « = 1 in this equation for the next trial solution.) In the orig-

inal coordinates, this solution is

X 2 0 off} 3
n|=D¥=|0 2 ofll=]|1|
x5 00 43 2

This completes the iteration, and this new sol

ution will be used to start the next iteration.

These steps can be summarized as follows for any iteration.

Example

Theory
Example

4
(0, 4, 0) optimal

=i
[

=

27

Iteration 2

Step 1:
Given the current trial solution (xy, x;. x3) = (; ; 2). set
100
D=0] 0
00 2
(Note that the rescaled variables are
T 2o olfx B
T=D'x=10 2 0|l x|=|x]
T 00 lxn s

8 £ 0 0
x=D'o|=|0[, X=D'8|=|%]
0 0 0 0
and
0 0
=D 'o|=|0]
8 4

as depicted in Fig. 8.6.)
Step 2:

3 i

A=AD=[12] and E=Dc=

Theory
Example

Step 3:
1 L 2
15 18 9
P % & % ad o] ¥
_2 _14 37 _4
9 a5 a5 15,
Step 4:
[l > 1
0.83
X= =140
0.50
Step 5:
2.08
x=DX = =149
1.00

is the trial solution for iteration 3.

28

Example

=i
[

3

16
7

]

0

\

1

® (0.83, 1.40,05) 5

(0.1 0) optimat

Theory
Example

29

Example

=

(0.4, 0 optimal

Theory
Example

® (0.83, 1.40,05) 5

(0.1 0} optimal

(L LD
[

(0, 163, 0) optimal

=

30

Example

6

(]

Theory
Example

(0, 8) optimal

(]
=
o
:j

31

Projection Calculations

Theory
Example

Projection matrix:

	Theory
	Example

