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Relaxations and Bounds
Subgradient OptimizationRelaxation

In branch and bound we find upper bounds by relaxing the problem

Relaxation

max
s∈P

g(s) ≥
{
maxs∈P f (s)
maxs∈S g(s)

}
≥ max

s∈S
f (s)

• P: candidate solutions;
• S ⊆ P feasible solutions;
• g(x) ≥ f (x)

Which constraints should be relaxed?
• Quality of bound (tightness of relaxation)
• Remaining problem can be solved efficiently
• Proper multipliers can be found efficiently
• Constraints difficult to formulate mathematically
• Constraints which are too expensive to write up
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Relaxations and Bounds
Subgradient OptimizationRelevant Relaxations

Different relaxations

• LP-relaxation

• Deleting constraint

• Lagrange relaxation

• Surrogate relaxation

• Semidefinite relaxation

Relaxations are often used in combination.

Best Lagrangian 

relaxation

relaxation

Best surrogate

LP relaxation

Tighter
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Relaxations and Bounds
Subgradient OptimizationSurrogate Relaxation

Integer Programming Problem: max{cx | Ax ≤ b,Dx ≤ d , x ∈ Zn
+}1

Relax complicating constraints Dx ≤ d .
Surrogate Relax Dx ≤ d using multipliers λ ≥ 0, i.e., add together constraints using weights λ

zSR(λ) = max cx

s.t. Ax ≤ b

λDx ≤ λd

x ∈ Zn
+

Proposition: Optimal Solution to relaxed problem gives an upper bound on original problem
Proof: show that it is a relaxation

Each multiplier λi is a weighting of the corresponding constraint
If λi large =⇒ constraint satisfied (at expenses of other constraints)
If λi = 0 =⇒ drop the constraint

1Notation: in this set of slides vectors are not in bold
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Relaxations and Bounds
Subgradient OptimizationSurrogate Relaxation: Example

maximize 4x1 + x2
subject to 3x1 − x2 ≤ 6

x2 ≤ 3
5x1 + 2x2 ≤ 18
x1, x2 ≥ 0, integer

IP solution (x1, x2) = (2, 3) with zIP = 11
LP solution (x1, x2) = ( 30

11 ,
24
11 ) with zLP = 144

11 = 13.1
First and third constraints complicating, surrogate relax using multipliers λ1 = 2 and λ3 = 1:

maximize 4x1 + x2
subject to x2 ≤ 3

11x1 ≤ 30
x1, x2 ≥ 0, integer

Solution (x1, x2) = (2, 3) with zSR = 4 · 2 + 3 = 11. Upper bound.
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Relaxations and Bounds
Subgradient OptimizationLagrangian Relaxation

Integer Linear Programming problem

z = max cx

s.t. Ax ≤ b

Dx ≤ d

x ∈ Zn
+

We relax the Dx ≤ d constraints:

Lagrangian Relaxation, λ ≥ 0:

zLR(λ) = max cx − λ(Dx − d)

s.t. Ax ≤ b

x ∈ Zn
+

optimizes over the x variables with λ fixed

Lagrange Dual Problem

zLD = min
λ≥0

zLR(λ)

optimizes over the λ variables with x fixed
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Relaxations and Bounds
Subgradient OptimizationTightness of Relaxations (1/2)

Integer Linear Programming problem

z = max cx

s.t. Ax ≤ b

Dx ≤ d

x ∈ Zn
+

It corresponds to:

z = max
{
cx : x ∈ conv(Ax ≤ b,Dx ≤ d , x ∈ Zn

+)
}

LP-relaxation:

zLP = max
{
cx : x ∈ Ax ≤ b,Dx ≤ d , x ∈ Rn

+

}
Lagrangian Relaxation, λ ≥ 0:

zLR(λ) = max cx − λ(Dx − d)

s.t. Ax ≤ b

x ∈ Zn
+

Lagrange Dual Problem

zLD = min
λ≥0

zLR(λ)

with best multipliers λ it corresponds to:

zLD = max
{
cx : Dx ≤ d , x ∈ conv(Ax ≤ b, x ∈ Zn

+)
}
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Fig 16.6 from [AMO]

(NB: role of Ax ≤ b
and Dx ≤ d inverted
wrt previous slide)



Relaxations and Bounds
Subgradient OptimizationTightness of Relaxations (2/2)

Surrogate Relaxation, λ ≥ 0

zSR(λ) = max cx

s.t. Ax ≤ b

λDx ≤ λd

x ∈ Zn
+

Surrogate Dual Problem

zSD = min
λ≥0

zSR(λ)

with best multipliers λ:

zSD = max
{
cx : x ∈ conv(Ax ≤ b, λDx ≤ λd , x ∈ Zn

+)
}

⇝ Best surrogate relaxation (i.e., best λ multipliers) is tighter than best Lagrangian relaxation.
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Relaxations and Bounds
Subgradient OptimizationRelaxation strategies

Which constraints should be relaxed

• "the complicating ones"

• remaining problem is polynomially solvable
(e.g. min spanning tree, assignment problem, linear programming)

• remaining problem is totally unimodular
(e.g. network problems)

• remaining problem is NP-hard but good techniques exist
(e.g. knapsack)

• constraints which cannot be expressed in MIP terms
(e.g. cutting)

• constraints which are too extensive to express
(e.g. subtour elimination in TSP)
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Relaxations and Bounds
Subgradient OptimizationSubgradient Optimization of Lagrangian Multipliers

z = max cx

s. t. Ax ≤ b

Dx ≤ d

x ∈ Zn
+

Lagrange Relaxation, multipliers λ ≥ 0

zLR(λ) = max cx − λ(Dx − d)

s. t. Ax ≤ b

x ∈ Zn
+

Lagrange Dual Problem

zLD = min
λ≥0

zLR(λ)

• We do not need best multipliers in B&B
algorithm

• Subgradient optimization fast method
• Works well due to convexity
• Roots in nonlinear programming, Held and

Karp (1971)
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Relaxations and Bounds
Subgradient OptimizationSubgradient optimization, motivation

Lagrange function zLR(λ) is piecewise linear and
convex

Netwon-like method to minimize a function in
one variable
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Relaxations and Bounds
Subgradient OptimizationDigression: Gradient methods

Gradient methods are iterative approaches:

• find a descent direction with respect to the objective function f
• move x in that direction by a step size

The descent direction can be computed by various methods, such as gradient descent,
Newton-Raphson method and others. The step size can be computed either exactly or loosely by
solving a line search problem.

Gradient descent algorithm:

Set iteration counter t = 0, and make an initial guess x0 for the minimum
Repeat:

Compute a descent direction ∆t = ∇(f (xt))
Choose αt to minimize f (xt − α∆t) over α ∈ R+

Update xt+1 = xt − αt∆t , and t = t + 1
Until ∥∇f (xk)∥ < tolerance

We will set αt ’loosely’ by taking small enough values αt > 0
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Relaxations and Bounds
Subgradient OptimizationNewton-Raphson method

Example of gradient algorithm:
Find zeros of a real-valued, derivable function

x : f (x) = 0 .

• Start with a guess x0

• Repeat:
Move to a better approximation

xn+1 = xn −
f (xn)

f ′(xn)

until a sufficiently accurate value is reached.

Geometrically, (xn+1, 0) is the intersection with the x-axis of a line tangent to f at (xn, f (xn)).

f ′(xn) =
∆y

∆x
=

f (xn)− 0
xn − xn+1

.
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Relaxations and Bounds
Subgradient OptimizationSubgradient

Subgradient: Generalization of gradients to non-differentiable functions.

Definition

An m-vector γ is subgradient of f (λ) at λ̄ if

f (λ) ≥ f (λ̄) + γ(λ− λ̄)

The inequality says that the hyperplane

y = f (λ̄) + γ(λ− λ̄)

is tangent to y = f (λ) at λ = λ̄ and supports
f (λ) from below
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Relaxations and Bounds
Subgradient Optimization

Proposition Given a choice of nonnegative multipliers λ̄, if x ′ is an optimal solution to zLR(λ̄) then

γ = d − Dx ′

is a subgradient of zLR(λ) at λ = λ̄.

Proof Note that for us in the LD problem: f (λ) = maxAx≤b (cx − λ(Dx − d)).
We wish to prove that the inequality from the subgradient definition holds:

max
Ax≤b

(cx − λ(Dx − d)) ≥ max
Ax≤b

(
cx − λ̄(Dx − d)

)
+ γ(λ− λ̄)

Indeed:
• We note that in the LHS: maxAx≤b

(
cx − λ̄(Dx − d)

)
= (cx ′ − λ̄(Dx ′ − d))

because x ′ is by hyothesis the optimal solution of f (λ̄).
• Rewriting the inequality using the hypothesis on γ we have:

max
Ax≤b

(cx − λ(Dx − d)) ≥ (cx ′ − λ̄(Dx ′ − d)) + (d − Dx ′)(λ− λ̄) = cx ′ − λ(Dx ′ − d)

The right most part is the evaluation of the left most problem at a single feasible solution.
Hence, it can be at most ≤.
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Relaxations and Bounds
Subgradient Optimization

Intuition
Lagrange dual:

min zLR(λ) = cx − λ(Dx − d)

s.t. Ax ≤ b

x ∈ Zn
+

Gradient in x ′ is
γ = d − Dx ′

Subgradient Iteration
Recursion

λk+1 = max
{
λk − θγk , 0

}
where θ > 0 is step-size

If γ > 0 and θ is sufficiently small zLR(λ) will decrease.
• Small θ slow convergence
• Large θ unstable
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Relaxations and Bounds
Subgradient OptimizationHeld and Karp procedure (gradient descent)

Initially

λ0 = [0, . . . , 0]

compute the new multipliers by recursion

λk+1
i :=

{
λk
i if |γi | ≤ ϵ

max(λk
i − θγi , 0) if |γi | > ϵ

where γ is subgradient.
The step θ is defined by

θ = µ
zLR(λ

k)− z∑
i γ

2
i

where µ is an appropriate constant and z a heuristic lower bound for the orginal ILP problem.
E.g. µ = 1 and halved if upper bound not decreased in 20 iterations.
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Relaxations and Bounds
Subgradient Optimization

Lagrange relaxation and LP
For an LP-problem where we Lagrange relax all constraints

• Dual variables are best choice of Lagrange multipliers

• Lagrange relaxation and LP "relaxation" give same bound

Gives a clue to solve LP-problems without Simplex

• Iterative algorithms

• Polynomial algorithms
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