
DM872

Math Optimization at Work

Lagrangian Relaxation

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Partly based on slides by David Pisinger, DIKU (now DTU)]

Relaxations and Bounds
Subgradient OptimizationOutline

1. Relaxations and Bounds

2. Subgradient Optimization

2

Relaxations and Bounds
Subgradient OptimizationOutline

1. Relaxations and Bounds

2. Subgradient Optimization

3

Relaxations and Bounds
Subgradient OptimizationRelaxation

In branch and bound we find upper bounds by relaxing the problem

Relaxation

max
s∈P

g(s) ≥
{
maxs∈P f (s)
maxs∈S g(s)

}
≥ max

s∈S
f (s)

• P: candidate solutions;
• S ⊆ P feasible solutions;
• g(x) ≥ f (x)

Which constraints should be relaxed?
• Quality of bound (tightness of relaxation)
• Remaining problem can be solved efficiently
• Proper multipliers can be found efficiently
• Constraints difficult to formulate mathematically
• Constraints which are too expensive to write up

4

Relaxations and Bounds
Subgradient OptimizationRelevant Relaxations

Different relaxations

• LP-relaxation

• Deleting constraint

• Lagrange relaxation

• Surrogate relaxation

• Semidefinite relaxation

Relaxations are often used in combination.

Best Lagrangian

relaxation

relaxation

Best surrogate

LP relaxation

Tighter

5

Relaxations and Bounds
Subgradient OptimizationSurrogate Relaxation

Integer Programming Problem: max{cx | Ax ≤ b,Dx ≤ d , x ∈ Zn
+}1

Relax complicating constraints Dx ≤ d .
Surrogate Relax Dx ≤ d using multipliers λ ≥ 0, i.e., add together constraints using weights λ

zSR(λ) = max cx

s.t. Ax ≤ b

λDx ≤ λd

x ∈ Zn
+

Proposition: Optimal Solution to relaxed problem gives an upper bound on original problem
Proof: show that it is a relaxation

Each multiplier λi is a weighting of the corresponding constraint
If λi large =⇒ constraint satisfied (at expenses of other constraints)
If λi = 0 =⇒ drop the constraint

1Notation: in this set of slides vectors are not in bold
6

Relaxations and Bounds
Subgradient OptimizationSurrogate Relaxation: Example

maximize 4x1 + x2
subject to 3x1 − x2 ≤ 6

x2 ≤ 3
5x1 + 2x2 ≤ 18
x1, x2 ≥ 0, integer

IP solution (x1, x2) = (2, 3) with zIP = 11
LP solution (x1, x2) = (30

11 ,
24
11) with zLP = 144

11 = 13.1
First and third constraints complicating, surrogate relax using multipliers λ1 = 2 and λ3 = 1:

maximize 4x1 + x2
subject to x2 ≤ 3

11x1 ≤ 30
x1, x2 ≥ 0, integer

Solution (x1, x2) = (2, 3) with zSR = 4 · 2 + 3 = 11. Upper bound.
7

Relaxations and Bounds
Subgradient OptimizationLagrangian Relaxation

Integer Linear Programming problem

z = max cx

s.t. Ax ≤ b

Dx ≤ d

x ∈ Zn
+

We relax the Dx ≤ d constraints:

Lagrangian Relaxation, λ ≥ 0:

zLR(λ) = max cx − λ(Dx − d)

s.t. Ax ≤ b

x ∈ Zn
+

optimizes over the x variables with λ fixed

Lagrange Dual Problem

zLD = min
λ≥0

zLR(λ)

optimizes over the λ variables with x fixed
9

Relaxations and Bounds
Subgradient OptimizationTightness of Relaxations (1/2)

Integer Linear Programming problem

z = max cx

s.t. Ax ≤ b

Dx ≤ d

x ∈ Zn
+

It corresponds to:

z = max
{
cx : x ∈ conv(Ax ≤ b,Dx ≤ d , x ∈ Zn

+)
}

LP-relaxation:

zLP = max
{
cx : x ∈ Ax ≤ b,Dx ≤ d , x ∈ Rn

+

}
Lagrangian Relaxation, λ ≥ 0:

zLR(λ) = max cx − λ(Dx − d)

s.t. Ax ≤ b

x ∈ Zn
+

Lagrange Dual Problem

zLD = min
λ≥0

zLR(λ)

with best multipliers λ it corresponds to:

zLD = max
{
cx : Dx ≤ d , x ∈ conv(Ax ≤ b, x ∈ Zn

+)
}

10

Fig 16.6 from [AMO]

(NB: role of Ax ≤ b
and Dx ≤ d inverted
wrt previous slide)

Relaxations and Bounds
Subgradient OptimizationTightness of Relaxations (2/2)

Surrogate Relaxation, λ ≥ 0

zSR(λ) = max cx

s.t. Ax ≤ b

λDx ≤ λd

x ∈ Zn
+

Surrogate Dual Problem

zSD = min
λ≥0

zSR(λ)

with best multipliers λ:

zSD = max
{
cx : x ∈ conv(Ax ≤ b, λDx ≤ λd , x ∈ Zn

+)
}

⇝ Best surrogate relaxation (i.e., best λ multipliers) is tighter than best Lagrangian relaxation.

12

Relaxations and Bounds
Subgradient OptimizationRelaxation strategies

Which constraints should be relaxed

• "the complicating ones"

• remaining problem is polynomially solvable
(e.g. min spanning tree, assignment problem, linear programming)

• remaining problem is totally unimodular
(e.g. network problems)

• remaining problem is NP-hard but good techniques exist
(e.g. knapsack)

• constraints which cannot be expressed in MIP terms
(e.g. cutting)

• constraints which are too extensive to express
(e.g. subtour elimination in TSP)

13

Relaxations and Bounds
Subgradient OptimizationOutline

1. Relaxations and Bounds

2. Subgradient Optimization

14

Relaxations and Bounds
Subgradient OptimizationSubgradient Optimization of Lagrangian Multipliers

z = max cx

s. t. Ax ≤ b

Dx ≤ d

x ∈ Zn
+

Lagrange Relaxation, multipliers λ ≥ 0

zLR(λ) = max cx − λ(Dx − d)

s. t. Ax ≤ b

x ∈ Zn
+

Lagrange Dual Problem

zLD = min
λ≥0

zLR(λ)

• We do not need best multipliers in B&B
algorithm

• Subgradient optimization fast method
• Works well due to convexity
• Roots in nonlinear programming, Held and

Karp (1971)

15

Relaxations and Bounds
Subgradient OptimizationSubgradient optimization, motivation

Lagrange function zLR(λ) is piecewise linear and
convex

Netwon-like method to minimize a function in
one variable

16

Relaxations and Bounds
Subgradient OptimizationDigression: Gradient methods

Gradient methods are iterative approaches:

• find a descent direction with respect to the objective function f
• move x in that direction by a step size

The descent direction can be computed by various methods, such as gradient descent,
Newton-Raphson method and others. The step size can be computed either exactly or loosely by
solving a line search problem.

Gradient descent algorithm:

Set iteration counter t = 0, and make an initial guess x0 for the minimum
Repeat:

Compute a descent direction ∆t = ∇(f (xt))
Choose αt to minimize f (xt − α∆t) over α ∈ R+

Update xt+1 = xt − αt∆t , and t = t + 1
Until ∥∇f (xk)∥ < tolerance

We will set αt ’loosely’ by taking small enough values αt > 0
17

Relaxations and Bounds
Subgradient OptimizationNewton-Raphson method

Example of gradient algorithm:
Find zeros of a real-valued, derivable function

x : f (x) = 0 .

• Start with a guess x0

• Repeat:
Move to a better approximation

xn+1 = xn −
f (xn)

f ′(xn)

until a sufficiently accurate value is reached.

Geometrically, (xn+1, 0) is the intersection with the x-axis of a line tangent to f at (xn, f (xn)).

f ′(xn) =
∆y

∆x
=

f (xn)− 0
xn − xn+1

.
18

Relaxations and Bounds
Subgradient OptimizationSubgradient

Subgradient: Generalization of gradients to non-differentiable functions.

Definition

An m-vector γ is subgradient of f (λ) at λ̄ if

f (λ) ≥ f (λ̄) + γ(λ− λ̄)

The inequality says that the hyperplane

y = f (λ̄) + γ(λ− λ̄)

is tangent to y = f (λ) at λ = λ̄ and supports
f (λ) from below

19

Relaxations and Bounds
Subgradient Optimization

Proposition Given a choice of nonnegative multipliers λ̄, if x ′ is an optimal solution to zLR(λ̄) then

γ = d − Dx ′

is a subgradient of zLR(λ) at λ = λ̄.

Proof Note that for us in the LD problem: f (λ) = maxAx≤b (cx − λ(Dx − d)).
We wish to prove that the inequality from the subgradient definition holds:

max
Ax≤b

(cx − λ(Dx − d)) ≥ max
Ax≤b

(
cx − λ̄(Dx − d)

)
+ γ(λ− λ̄)

Indeed:
• We note that in the LHS: maxAx≤b

(
cx − λ̄(Dx − d)

)
= (cx ′ − λ̄(Dx ′ − d))

because x ′ is by hyothesis the optimal solution of f (λ̄).
• Rewriting the inequality using the hypothesis on γ we have:

max
Ax≤b

(cx − λ(Dx − d)) ≥ (cx ′ − λ̄(Dx ′ − d)) + (d − Dx ′)(λ− λ̄) = cx ′ − λ(Dx ′ − d)

The right most part is the evaluation of the left most problem at a single feasible solution.
Hence, it can be at most ≤.

20

Relaxations and Bounds
Subgradient Optimization

Intuition
Lagrange dual:

min zLR(λ) = cx − λ(Dx − d)

s.t. Ax ≤ b

x ∈ Zn
+

Gradient in x ′ is
γ = d − Dx ′

Subgradient Iteration
Recursion

λk+1 = max
{
λk − θγk , 0

}
where θ > 0 is step-size

If γ > 0 and θ is sufficiently small zLR(λ) will decrease.
• Small θ slow convergence
• Large θ unstable

21

Relaxations and Bounds
Subgradient OptimizationHeld and Karp procedure (gradient descent)

Initially

λ0 = [0, . . . , 0]

compute the new multipliers by recursion

λk+1
i :=

{
λk
i if |γi | ≤ ϵ

max(λk
i − θγi , 0) if |γi | > ϵ

where γ is subgradient.
The step θ is defined by

θ = µ
zLR(λ

k)− z∑
i γ

2
i

where µ is an appropriate constant and z a heuristic lower bound for the orginal ILP problem.
E.g. µ = 1 and halved if upper bound not decreased in 20 iterations.

22

Relaxations and Bounds
Subgradient Optimization

Lagrange relaxation and LP
For an LP-problem where we Lagrange relax all constraints

• Dual variables are best choice of Lagrange multipliers

• Lagrange relaxation and LP "relaxation" give same bound

Gives a clue to solve LP-problems without Simplex

• Iterative algorithms

• Polynomial algorithms

23

	Relaxations and Bounds
	Subgradient Optimization

