DM872 Math Optimization at Work

Lagrangian Relaxation

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

[Partly based on slides by David Pisinger, DIKU (now DTU)]

Outline

Relaxations and Bounds Subgradient Optimization

1. Relaxations and Bounds

2. Subgradient Optimization

Outline

1. Relaxations and Bounds

2. Subgradient Optimization

Relaxation

In branch and bound we find upper bounds by relaxing the problem

Relaxation

$$\max_{\boldsymbol{s}\in P} g(\boldsymbol{s}) \geq \left\{ \max_{\boldsymbol{s}\in P} f(\boldsymbol{s}) \atop \max_{\boldsymbol{s}\in S} g(\boldsymbol{s}) \right\} \geq \max_{\boldsymbol{s}\in S} f(\boldsymbol{s})$$

- *P*: candidate solutions;
- $S \subseteq P$ feasible solutions;
- $g(\mathbf{x}) \geq f(\mathbf{x})$

Which constraints should be relaxed?

- Quality of bound (tightness of relaxation)
- Remaining problem can be solved efficiently
- Proper multipliers can be found efficiently
- Constraints difficult to formulate mathematically
- Constraints which are too expensive to write up

Relevant Relaxations

Different relaxations

- LP-relaxation
- Deleting constraint
- Lagrange relaxation
- Surrogate relaxation
- Semidefinite relaxation

Relaxations are often used in combination.

Tighter Best surrogate relaxation **Best Lagrangian** relaxation

LP relaxation

Surrogate Relaxation

Integer Programming Problem: $\max\{cx \mid Ax \leq b, Dx \leq d, x \in \mathbb{Z}_+^n\}^1$ Relax complicating constraints $Dx \leq d$. Surrogate Relax $Dx \leq d$ using multipliers $\lambda \geq 0$, i.e., add together constraints using weights λ

```
egin{aligned} &z_{SR}(\lambda) = \max{cx} \ &	ext{s.t.} \ Ax \leq b \ & \lambda Dx \leq \lambda d \ & x \in \mathbb{Z}^n_+ \end{aligned}
```

Proposition: Optimal Solution to relaxed problem gives an upper bound on original problem **Proof:** show that it is a relaxation

Each multiplier λ_i is a weighting of the corresponding constraint If λ_i large \implies constraint satisfied (at expenses of other constraints) If $\lambda_i = 0 \implies$ drop the constraint

¹Notation: in this set of slides vectors are not in bold

Surrogate Relaxation: Example

 $\begin{array}{rll} {\hbox{maximize}} & 4x_1 + & x_2 \\ {\hbox{subject to}} & 3x_1 - & x_2 \leq 6 \\ & & x_2 \leq 3 \\ & 5x_1 + 2x_2 \leq 18 \\ & x_1, & x_2 \geq 0, {\hbox{integer}} \end{array}$

IP solution $(x_1, x_2) = (2, 3)$ with $z_{IP} = 11$ LP solution $(x_1, x_2) = (\frac{30}{11}, \frac{24}{11})$ with $z_{LP} = \frac{144}{11} = 13.1$ First and third constraints complicating, surrogate relax using multipliers $\lambda_1 = 2$ and $\lambda_3 = 1$:

$$\begin{array}{ll} \mbox{maximize} & 4x_1 + x_2 \\ \mbox{subject to} & x_2 \leq 3 \\ & 11x_1 & \leq 30 \\ & x_1, & x_2 \geq 0, \mbox{integer} \end{array}$$

Solution $(x_1, x_2) = (2, 3)$ with $z_{SR} = 4 \cdot 2 + 3 = 11$. Upper bound.

Lagrangian Relaxation

Integer Linear Programming problem

 $z = \max cx$ s.t. $Ax \le b$ $Dx \le d$ $x \in \mathbb{Z}^n_+$

We relax the $Dx \leq d$ constraints:

Lagrangian Relaxation, $\lambda \geq 0$:

$$egin{aligned} & z_{LR}(\lambda) = \max{cx} - \lambda(Dx - d) \ & ext{s.t.} \ Ax \leq b \ & x \in \mathbb{Z}^n_+ \end{aligned}$$

optimizes over the x variables with λ fixed

Lagrange Dual Problem

 $z_{LD} = \min_{\lambda \ge 0} z_{LR}(\lambda)$

optimizes over the λ variables with x fixed

Tightness of Relaxations (1/2)

Relaxations and Bounds Subgradient Optimization

Integer Linear Programming problem

 $z = \max cx$ s.t. $Ax \le b$ $Dx \le d$ $x \in \mathbb{Z}^n_+$ It corresponds to:

$$ig| z = \max ig\{ cx \, : \, x \in \operatorname{conv}(Ax \le b, Dx \le d, x \in \mathbb{Z}^n_+) ig\}$$

LP-relaxation:

Lagrange Dual Problem

 $z_{LD} = \min_{\lambda > 0} z_{LR}(\lambda)$

$$z_{LP} = \max \left\{ cx : x \in Ax \le b, Dx \le d, x \in \mathbb{R}_+^n \right\}$$

Lagrangian Relaxation, $\lambda \geq 0$:

$$egin{aligned} & z_{LR}(\lambda) = \max{cx} - \lambda(Dx - d) \ & ext{s.t.} \ Ax \leq b \ & x \in \mathbb{Z}^n_+ \end{aligned}$$

with best multipliers λ it corresponds to:

 $z_{LD} = \max\left\{cx : Dx \le d, x \in \operatorname{conv}(Ax \le b, x \in \mathbb{Z}^n_+)
ight\}$

(NB: role of $Ax \leq b$ and $Dx \leq d$ inverted wrt previous slide)

Fig 16.6 from [AMO]

Tightness of Relaxations (2/2)

Surrogate Relaxation, $\lambda \geq 0$

$$egin{aligned} &z_{SR}(\lambda) = \max{cx} \ & ext{s.t.} \ Ax \leq b \ &\lambda Dx \leq \lambda d \ &x \in \mathbb{Z}^n_+ \end{aligned}$$

Surrogate Dual Problem

$$z_{SD} = \min_{\lambda \ge 0} z_{SR}(\lambda)$$

with best multipliers λ :

$$\Big| z_{SD} = \max \{ cx : x \in \operatorname{conv}(Ax \le b, \lambda Dx \le \lambda d, x \in \mathbb{Z}^n_+) \}$$

 \rightsquigarrow Best surrogate relaxation (i.e., best λ multipliers) is tighter than best Lagrangian relaxation.

Relaxation strategies

Which constraints should be relaxed

- "the complicating ones"
- remaining problem is polynomially solvable (e.g. min spanning tree, assignment problem, linear programming)
- remaining problem is totally unimodular (e.g. network problems)
- remaining problem is NP-hard but good techniques exist (e.g. knapsack)
- constraints which cannot be expressed in MIP terms (e.g. cutting)
- constraints which are too extensive to express (e.g. subtour elimination in TSP)

1. Relaxations and Bounds

2. Subgradient Optimization

Subgradient Optimization of Lagrangian Multiplier Subgradient Optimization

 $z = \max cx$ s.t. $Ax \le b$ $Dx \le d$ $x \in \mathbb{Z}^n_+$

Lagrange Relaxation, multipliers $\lambda \geq 0$

$$egin{aligned} & z_{LR}(\lambda) = \max \ cx - \lambda(Dx - d) \ & ext{s.t.} \ Ax \leq b \ & x \in \mathbb{Z}^n_+ \end{aligned}$$

Lagrange Dual Problem

$$z_{LD} = \min_{\lambda \ge 0} z_{LR}(\lambda)$$

- We do not need best multipliers in B&B algorithm
- Subgradient optimization fast method
- Works well due to convexity
- Roots in nonlinear programming, Held and Karp (1971)

Subgradient optimization, motivation

Lagrange function $z_{LR}(\lambda)$ is piecewise linear and convex

Netwon-like method to minimize a function in one variable

Digression: Gradient methods

Gradient methods are iterative approaches:

- find a descent direction with respect to the objective function f
- move x in that direction by a step size

The descent direction can be computed by various methods, such as gradient descent, Newton-Raphson method and others. The step size can be computed either exactly or loosely by solving a line search problem.

Gradient descent algorithm:

Set iteration counter t = 0, and make an initial guess x_0 for the minimum Repeat:

Compute a descent direction $\Delta_t = \nabla(f(x_t))$ Choose α_t to minimize $f(x_t - \alpha \Delta_t)$ over $\alpha \in \mathbb{R}_+$ Update $x_{t+1} = x_t - \alpha_t \Delta_t$, and t = t + 1Until $\|\nabla f(x_k)\| < tolerance$

We will set α_t 'loosely' by taking small enough values $\alpha_t > 0$

Newton-Raphson method

Example of gradient algorithm: Find zeros of a real-valued, derivable function

x:f(x)=0.

- Start with a guess x_0
- Repeat:

Move to a better approximation

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

until a sufficiently accurate value is reached.

Geometrically, $(x_{n+1}, 0)$ is the intersection with the x-axis of a line tangent to f at $(x_n, f(x_n))$.

$$f'(x_n) = \frac{\Delta y}{\Delta x} = \frac{f(x_n) - 0}{x_n - x_{n+1}}.$$

18

Subgradient

Subgradient: Generalization of gradients to non-differentiable functions.

Definition

```
An m-vector \gamma is subgradient of f(\lambda) at \overline{\lambda} if
```

 $f(\lambda) \ge f(\bar{\lambda}) + \gamma(\lambda - \bar{\lambda})$

The inequality says that the hyperplane

 $y = f(\bar{\lambda}) + \gamma(\lambda - \bar{\lambda})$

is tangent to $y = f(\lambda)$ at $\lambda = \overline{\lambda}$ and supports $f(\lambda)$ from below

Proposition Given a choice of nonnegative multipliers $\bar{\lambda}$, if x' is an optimal solution to $z_{LR}(\bar{\lambda})$ then

 $\gamma = d - Dx'$

is a subgradient of $z_{LR}(\lambda)$ at $\lambda = \overline{\lambda}$.

Proof Note that for us in the LD problem: $f(\lambda) = \max_{Ax \le b} (cx - \lambda(Dx - d))$. We wish to prove that the inequality from the subgradient definition holds:

$$\max_{Ax\leq b}\left(cx-\lambda(Dx-d)
ight)\geq \max_{Ax\leq b}\left(cx-ar{\lambda}(Dx-d)
ight)+\gamma(\lambda-ar{\lambda})$$

Indeed:

- We note that in the LHS: max_{Ax≤b} (cx λ̄(Dx d)) = (cx' λ̄(Dx' d)) because x' is by hyothesis the optimal solution of f(λ̄).
- Rewriting the inequality using the hypothesis on γ we have:

 $\max_{Ax \leq b} (cx - \lambda(Dx - d)) \geq (cx' - \overline{\lambda}(Dx' - d)) + (d - Dx')(\lambda - \overline{\lambda}) = cx' - \lambda(Dx' - d)$

The right most part is the evaluation of the left most problem at a single feasible solution. Hence, it can be at most \leq .

Intuition

Lagrange dual:

min $z_{LR}(\lambda) = cx - \lambda(Dx - d)$ s.t. $Ax \le b$ $x \in \mathbb{Z}^n_+$

Gradient in x' is

$$\gamma = d - Dx'$$

Subgradient Iteration

Recursion

$$\lambda^{k+1} = \max\left\{\lambda^k - \theta\gamma^k, \mathbf{0}
ight\}$$

where $\theta > 0$ is step-size

If $\gamma > 0$ and θ is sufficiently small $z_{LR}(\lambda)$ will decrease.

- Small θ slow convergence
- Large θ unstable

Held and Karp procedure (gradient descent)

Initially

 $\lambda^0 = [0, \ldots, 0]$

compute the new multipliers by recursion

$$\lambda_i^{k+1} := egin{cases} \lambda_i^k & ext{if } |\gamma_i| \leq \epsilon \ \max(\lambda_i^k - heta \gamma_i, 0) & ext{if } |\gamma_i| > \epsilon \end{cases}$$

where γ is subgradient. The step θ is defined by

$$\theta = \mu \frac{z_{LR}(\lambda^k) - \underline{z}}{\sum_i \gamma_i^2}$$

where μ is an appropriate constant and \underline{z} a heuristic lower bound for the orginal ILP problem. E.g. $\mu = 1$ and halved if upper bound not decreased in 20 iterations.

Lagrange relaxation and LP

For an LP-problem where we Lagrange relax all constraints

- Dual variables are best choice of Lagrange multipliers
- Lagrange relaxation and LP "relaxation" give same bound

Gives a clue to solve LP-problems without Simplex

- Iterative algorithms
- Polynomial algorithms