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Modeling with IP, BIP, MIPModeling with IP, BIP, MIP

(see also lec. 9)

Iterate:
1. define parameters

2. define variables

3. use variables to express objective function

4. use variables to express constraints

a. problems with discrete input/output (knapsack, factory planning)

b. problems with logical conditions

c. combinatorial problems (sequencing, allocation, transport, assignment, partitioning)

d. network problems
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Modeling with IP, BIP, MIP

Variables
discrete quantities ∈ Zn

decision variables ∈ Bn

indicator/auxiliary variables (for logical conditions) ∈ Bn

special ordered sets ∈ Bn

incidence vector of S ∈ Bn

Assignment

max
σ

{∑
i

ci,σ(i) | σ : I → J

}

TSP

min
π

{∑
i

ci,π(i) | π : {1..n} → {1..n} and π is a circuit

}

COP

min
S⊆N

∑
j∈S

cj | S ∈ F


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Modeling with IP, BIP, MIPLogical Conditions

x binary
y integer
z continuous

Linking constraints z ∈ R, x ∈ B

if z = 0 then x = 0, if z > 0 then x = 1 ⇝ z −Mx ≤ 0
x = 1 =⇒ z ≥ m ⇝ z −mx ≥ 0

Logical conditions and 0 − 1 variables

X1 ∨ X2 ⇐⇒ x1 + x2 ≥ 1
X1 ∧ X2 ⇐⇒ x1 = 1, x2 = 1
¬X1 ⇐⇒ x1 = 0 or (1 − x1 = 1)
X1 → X2 ⇐⇒ x1 − x2 ≤ 0
X1 ↔ X2 ⇐⇒ x1 − x2 = 0
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Modeling with IP, BIP, MIPExamples

• (XA ∨ XB) → (XC ∨ XD ∨ XE )

xA + xB ≥ 1 xC + xD + xE ≥ 1
xA + xB ≥ 1 =⇒ x = 1 x = 1 =⇒ xC + xD + xE ≥ 1
xA + xB − 2x ≤ 0 xC + xD + xE ≥ x

• Disjunctive constraints (encountered earlier)

• Constraint: x1x2 = 0

1) replace x1x2 by x3
2) x3 = 1 ⇐⇒ x1 = 1, x2 = 1

−x1 + x3 ≤ 0
− x2 + x3 ≤ 0

x1 + x2 − x3 ≤ 1
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Modeling with IP, BIP, MIP

• z · x , z ∈ R, x ∈ B
1) replace zx by z1
2) impose:

x = 0 ⇐⇒ z1 = 0
x = 1 ⇐⇒ z1 = z

z1 −Mx ≤ 0
−z + z1 ≤ 0
z − z1 +Mx ≤ M

• Special ordered sets of type 1/2 (for continuous or integer vars):
SOS1: set of vars within which exactly one must be non-zero
SOS2: set of vars within which at most two can be non-zero. The two variables must be
adjacent in the ordering

• separable programming and piecewise linear functions (next 5 slides)
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Modeling with IP, BIP, MIPSeparable Programming

• Separable functions: sum of functions of single variables:

x2
1 + 2x2 + ex

3
YES

x1x2 +
x2

x1 + 1
+ x3 NO

(actually, some non-separable can also be made separable:
1. x1x2 by y
2. relate y to x1 and x2 by:

log y = log x1 + log x2

needs care if x1 and x2 close to zero.)

• non-linear separable functions can be approximated by piecewise linear functions
(valid for both constraints and objective functions)
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Modeling with IP, BIP, MIPConvex Non-linear Functions

• We can model convex non-linear functions by piece-wise linear functions and LP

min x2
1 − 4x1 − 2x2

x1 + x2 ≤ 4
2x1 + x2 ≤ 5
−x1 + 4x2 ≥ 2

x1, x2 ≥ 0

x2
1

a1 a2a3
x1

x2

• LP Formulation
x = λ0a0 + λ1a1 + λ2a2 + λ3a3
y = λ0f (a0) + λ1f (a1) + λ2f (a2) + λ3f (a3)∑3

i=0 λi = 1
λi ≥ 0 i = 0, . . . , 3
at most two adjacent λi can be non zero (*)
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Modeling with IP, BIP, MIP

• To model (*) which are SOS2 we would need binary indicator variables and hence BIP as in
next slide.

• However since the problem is convex, an optimal solution lies on the borders of the functions
and hence we can skip introducing the binary variables and relax (*)
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Modeling with IP, BIP, MIPNon-convex Functions
Piece-wise Linear Functions

• non-convex functions require indicator variables and IP formulation

g(x) =
∑
j

gj(x) gj non linear

• approximated by f (x) piecewise linear in the disjoint intervals [ai , bi ]

• convex hull formulation (convex combination of points)

⋃
i∈I

 x = λiai + µibi
y = λi f (ai ) + µi f (bi )
λi + µi = 1 λi , µi ≥ 0

 Remember how we modeled disjunctive
polyhedra...

(cntd)
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Modeling with IP, BIP, MIP

• using indicator variables δs we obtain the BIP formulation:

x =
∑

i∈I (λiai + µibi )
y =

∑
i∈I (λi f (ai ) + µi f (bi ))

λi + µi = δi ∀i ∈ I∑
i∈I δi = 1

λi , µi ≥ 0 ∀i ∈ I
δi ∈ {0, 1} ∀i ∈ I

the δs are SOS1.
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Modeling with IP, BIP, MIPGood/Bad Models
• Number of variables: sometimes it may be advantageous increasing if they are used in search

tree.

0 − 1 var have specialized algorithms for preprocessing and for branch and bound. Hence a
large number solved efficiently. Good using.
Binary expansion:

0 ≤ y ≤ u

y = x0 + 2x1 + 4x2 + 8x3 + . . .+ 2rxr r = log2 u

• Making explicit good variables for branching:∑
j

ajxj ≤ b

∑
j

ajxj + u = b

u may be a good variable to branch (u is relaxed in LP but must be integer as well)
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Modeling with IP, BIP, MIP

• Symmetry breaking:
Eg machine maintenance (in FPMM) yj ∈ Z vs xj ∈ B

• Difficulty of LP models depends on number of constraints:

min
∑
t

|atzt − bt | max
∑
t

z ′t

z ′t ≥ atzt − b1

z ′t ≥ bt − atzt

max
∑
t

z+t − z−t

z+t − z−t = atzt − bt

more variables but less
constraints

• With IP it might be instead better increasing the number of constraints.

• Make big M as small as possible in IP (reduces feasible region possibly fitting it to convex
hull).

18



Modeling with IP, BIP, MIPPractical Tips

• Units of measure: check them!
all data should be scaled to stay in 0.1 − 10
some software does this automatically

• Write few lines of text describing what the equations express and which are the variables, give
examples on the problem modeled.

• Try the model on small simple example that can be checked by hand.

• Be diffident of infeasibility and unboundedness, double check.

• Estimate the potential size.
If IP problem large and no structure then it might be hard.
If TUM then solvable with very large size
If other structure, eg, packing, covering also solvable with large size

• Check the output of the solver and understand what is happening

• If all fails resort to heuristics
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