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Factory A Factory B
Standard Deluxe Standard Deluxe

(Machine 1) Grinding 4 2 5 3
(Machine 2) Polishing 2 5 5 6

Maximize Profit 10x1 + 15x2
Subject to Raw A 4x1 + 4x2 ≤ 75

Grinding A 4x1 + 2x2 ≤ 80
Polishing A 2x1 + 5x2 ≤ 60

x1, x2 ≥ 0

Maximize Profit 10x3 + 15x4
Subject to Raw B 4x3 + 4x4 ≤ 45

Grinding B 5x3 + 3x4 ≤ 60
Polishing B 5x3 + 6x4 ≤ 75

x3, x4 ≥ 0
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Maximize Profit 10x1 + 15x2 + 10x3 + 15x4
Subject to Raw 4x1 + 4x2 + 4x3 + 4x4 ≤ 120

Grinding A 4x1 + 2x2 + ≤ 80
Polishing A 2x1 + 5x2 + ≤ 60

+ 5x3 + 3x4 ≤ 60
+ 5x3 + 6x4 ≤ 75

x1, x2, x3, x4 ≥ 0

allocation problems between plants +
decision making within plants.
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The rows A0, . . . , An are known as common rows.
The diagonally placed blocks are known as submodels.
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Multi-product and mulit-period models lead also to staircase structures:
Amount in store at end of period (t − 1) + amount bought in period t =

amount used in period t + amount in store at end of period t

It can be converted into a block angular structure: alternate ‘steps’ such as (A0, B1), (A2, B3) can
be treated as subproblem constraints and the intermediate ‘steps’, eg. (A1, B1), as common rows.

6



Structured LP models
Optimization under UncertaintyBlock Angular Structure

It can be seen as the dual of the common row structure. However, this structure arises often in
stochastic programming cases and it can be treated in its own way.
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Planning under uncertainty when data not known with certainty:

• inaccuracy of data
• multi-stage models where certain events, which need to be modelled, have not yet occurred.

Alternative approaches:

• sensitivity analysis, how solution change with limited changes to data

• robust optimization, when we canot quantify the uncertainty and the related risk. Stable
solutions

• risk-averse (maximin, conditional value-at-risk): make the worst possible result as little bad as
possible

• stochastic optimization, when uncertainty can be quantified.
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Typical examples:

• News vendor problem

• Energy production

• Portfolio optimization

• Multi-period production planning
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Stochastic programming (SP) is mathematical (i.e. linear, integer, mixed-integer, nonlinear)
programming but with a stochastic element present in the data.

• in deterministic mathematical programming the data (coefficients) are known numbers
• in stochastic programming data are unknown, instead we may have a probability distribution

present.

We consider two distinct stochastic programming problems:
• probabilistic constraints
• recourse problems.

The following slides are based on John E Beasley’s OR-Notes on [Stochastic
Programming](people.brunel.ac.uk/~mastjjb/jeb/or/sp.html)

Learn more about SP at https://www.stoprog.org/.

11

people.brunel.ac.uk/~mastjjb/jeb/or/sp.html
https://www.stoprog.org/


Structured LP models
Optimization under UncertaintyProbabilistic constraints

Suppose that we have two six-sided dice. Die one gives a result a1 when thrown and die 2 a result
a2. Assuming the dice are fair we have discrete probability distributions for a1 and a2 as:

a1 = i (i = 1, ..., 6) with probability 1/6
a2 = j (j = 1, ..., 6) with probability 1/6

Consider a simple LP with two variables and one constraint:

minimise 5x + 6y
subject to: a1x + a2y ≥ 3

x , y ≥ 0

What does this LP mean?
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One interpretation could be that we wish the constraint a1x + a2y ≥ 3 to hold for all possible
values of a1 and a2. Then we simply have a deterministic LP with two variables and 36 constraints:

minimise 5x + 6y
subject to: ix + jy ≥ 3 i = 1, ..., 6 j = 1, ..., 6

x , y ≥ 0
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Suppose now that we insist that the constraint a1x + a2y ≥ 3 holds only with a specified
probability 1 − α (where 0 < α < 1).

For example α = 0.05 would mean that we want the constraint a1x + a2y ≥ 3 to hold with
probability 0.95.
Chance constraint: A constraint need not always be true now, rather it need only be true, eg, 95%
of the time.

minimise 5x + 6y
subject to: Prob(a1x + a2y ≥ 3) ≥ 1 − α

x , y ≥ 0

Here, a1 and a2 are unknown, we merely have probability distribution information for them. We are
required to choose values for x and y such that the objective function is minimised and the
probability that the constraint a1x + a2y ≥ 3 is satisfied is at least 1 − α.
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For each pair of values (a1, a2) we have an associated joint probability (1/36 in this simple case)
then: given values for x ≥ 0 and y ≥ 0 we can easily check by enumeration whether the constraint
is true with probability 1 − α.

Eg, for x = 0, y = 1 and α = 0.05:

a1 a2 Is a10 + a21 ≥ 3? Probability
1 1 No 1/36
2 1 No 1/36

...

We already have a probability of 2/36 = 0.0555 that the constraint is infeasible. Hence, it is
impossible for the constraint to be feasible with probability 0.95 (since 1-0.0555 = 0.9445). Hence,
x = 0, y = 1 is not a solution to the problem.

Conceptually, we could simply enumerate all possible values for x and y and choose those values
that minimise 5x + 6y .
Hence, the problem is well defined
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This problem is an example of a stochastic (linear) program with probabilistic constraints. Such
problems are also sometimes called chance-constrained linear programs:

• mix of probabilistic and deterministic coefficients in the same problem
• mix of probabilistic and deterministic constraints in the same problem.

To solve SP’s with probabilistic constraints we transform them into an equivalent deterministic
program. Note here however that even if the original SP is linear the equivalent deterministic
program may not be.
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Define zero-one variables zij using:
zij = 1 if when a1 takes the value i (i = 1, ..., 6) and

a2 takes the value j (j = 1, ..., 6) ix + jy ≥ 3
= 0 otherwise

Let pij be the probability that a1 takes the value i (i = 1, ..., 6) and a2 takes the j (j = 1, ..., 6).
That is, pij = 1/36.

The deterministic equivalent is:

minimise Mzij + (5x + 6y) (1)
subject to: zij ≥ [(ix + jy) − 3 + δ]/M i = 1, ..., 6 j = 1, ..., 6 (2)

6∑
i=1

6∑
j=1

pijzij ≥ 1 − α (3)

zij ∈ {0, 1} i = 1, ..., 6 j = 1, ..., 6 (4)
x , y ≥ 0 (5)
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Suppose now that:

a1 has a normal distribution with mean A1 and standard deviation D1, i.e. N(A1, (D1)2);
a2 has a normal distribution with mean A2 and standard deviation D2, i.e. N(A2, (D2)2)

and a1 and a2 independent.

a1x + a2y ∼ N(A1x + A2y , [(D1x)2 + (D2y)2]1/2) because sum of normal distrs.
Hence, Prob(a1x + a2y ≥ 3) ≥ 1 − α can be addressed in the standard way for normal distribution
probability calculations.

Let K be the value of the standard normal distribution N(0, 1) which has a probability of exactly α
of being exceeded (e.g. if alpha=0.025 then K=1.96). Such values are easily obtained from
statistical tables.

3 − (A1x + A2y)√
(D1x)2 + (D2y)2

≥ K
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So our SP becomes a non linear program:

minimise 5x + 6y

subject to: 3 − (A1x + A2y) ≥ K
√

(D1x)2 + (D2y)2

x , y ≥ 0
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In the simplest model of this type we have two stages:

• in the first stage we make a decision

• in the second stage we see a realisation of the stochastic elements of the problem BUT are
allowed to make further decisions to avoid the constraints of the problem becoming infeasible.

In the second stage the decisions that we make will be dependent upon the particular realisation of
the stochastic elements observed.
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• We produce product X
• each unit of X that we make costs us 20 kr.
• X is made to meet demand from customers in the next time period.
• demand is stochastic, with a discrete probability distribution: demand = Ds with probability ps

(s = 1, ..., S). Informally, we can think of having S scenarios for possible future demand.
• customer demand must be met.
• we have the flexibility to buy in the product from an external supplier to meet observed

customer demand but this costs us 30 kr per unit (i.e. we have recourse to an additional
source of supply if demand exceeds production).

• How much should we choose to make now before we know what customer demand is?
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S = 2 and D1 = 500, p1 = 0.6; D2 = 700, p2 = 0.4.

If we were to produce 600 then if demand is 500 we are OK,
if demand is 700 we need recourse to an extra 100 units to meet it.

Two-stage model:
• action, make a decision (amount to produce)
• observation, observe a realisation of the stochastic elements (demand that occurs)
• reaction (recourse), further decisions, depending upon the realisation observed (extra

production to meet demand if necessary)
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Let y2s ≥ 0 be the number of units of X to buy from the external supplier at the second stage in
scenario s when the stochastic realisation of the demand is Ds (s = 1, ..., S).

Goal: minimise total expected cost

minimise 2x1 +
S∑

s=1
ps(3y2s)

subject to x1 + y2s ≥ Ds s = 1, ..., S
x1 ≥ 0
y2s ≥ 0 s = 1, ..., S

It is a deterministic program. We could require x1 and y2s to be integer.
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The production quantity that minimises expected cost is x1 = 500.
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To minimise our worst case cost we should produce 700 now.
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• the stochastic elements have a discrete distribution
• the realisations of the stochastic elements are represented as a number of future scenarios

We look forward two periods into the future in planning production.

Two level (three stage) binary scenario tree
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• We initially make a decision about how much to produce.
• At the second stage have two possible realisations of the stochastic demand:

• a demand of 500 with probability 0.6
• a demand of 700 with probability 0.4

• After this realisation we make a decision as to how much to produce to meet demand in the
next period (the third-stage).

• At the third stage we again have two possible realisations of the stochastic demand, but these
are different depending upon the realisation at the second stage. If second stage was 500 then:

• a demand of 600 with probability 0.3
• a demand of 700 with probability 0.7

• (at each level in the scenario tree the appropriate probabilities must sum to one)

This two-level scenario tree actually represents 22 = 4 possible scenarios of the future:
Scenario Second stage Third stage Probability
1 500 600 0.6(0.3) = 0.18
2 500 700 0.6(0.7) = 0.42
3 700 900 0.4(0.2) = 0.08
4 700 800 0.4(0.8) = 0.32
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We have the following order of events:

• in the first stage a decision as to how much to produce; then
• in the second stage a realisation of the stochastic element (demand); then
• a decision as to the values of the recourse variables; then
• in the second stage a decision as to how much to produce; then
• in the third stage a realisation of the stochastic element (demand); and finally
• a decision as to the values of the recourse variables.
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• x1 ≥ 0 be the number of units of X to produce now (at the first stage)
• y2s ≥ 0 be the number of units of X to buy from the external supplier at the second stage in

scenario s (s = 1, ..., 4)
• x2s ≥ 0 be the number of units of X to produce at the second stage in scenario s (s=1,...,4)
• y3s ≥ 0 be the number of units of X to buy from the external supplier at the third stage in

scenario s (s=1,...,4)
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At the first stage, the constraints to ensure customer demand is satisfied are:
x1 + y2s >= 500 (s=1,2)
x1 + y2s >= 700 (s=3,4)

At the second stage we will have units left over (i.e. inventory) to help meet future demand. This
inventory level will be:

x1 + y2s - 500 (s=1,2)
x1 + y2s - 700 (s=3,4)

To ensure that demand is met in the third stage we have:
inventory + amount produced + amount bought externally ≥ demand

x1 + y2s - 500 + x2s + y3s >= 600 (s=1)
x1 + y2s - 500 + x2s + y3s >= 700 (s=2)
x1 + y2s - 700 + x2s + y3s >= 900 (s=3)
x1 + y2s - 700 + x2s + y3s >= 800 (s=4)

non-anticipativity constraints, scenarios with a common history must have the same set of decisions:
scenarios 1 and 2, second stage:

y21=y22
x21=x22

scenarios 3 and 4, second stage:
y23=y24
x23=x24
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objective function: minimize expected costs
Scenario Probability Cost
1 0.18 2x21 + 3y21 + 3y31
2 0.42 2x22 + 3y22 + 3y32
3 0.08 2x23 + 3y23 + 3y33
4 0.32 2x24 + 3y24 + 3y34

Weighting each scenario cost by the associated scenario probability will give the expected cost.

minimise

2x1 + 0.18(2x21 + 3y21 + 3y31) + 0.42(2x22 + 3y22 + 3y32)
+ 0.08(2x23 + 3y23 + 3y33) + 0.32(2x24 + 3y24 + 3y34)
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minimise

2x1 + 0.18(2x21 + 3y21 + 3y31) + 0.42(2x22 + 3y22 + 3y32)
+ 0.08(2x23 + 3y23 + 3y33) + 0.32(2x24 + 3y24 + 3y34)

subject to

x1 + y2s >= 500 (s=1,2)
x1 + y2s >= 700 (s=3,4)

x1 + y2s - 500 + x2s + y3s >= 600 (s=1)
x1 + y2s - 500 + x2s + y3s >= 700 (s=2)
x1 + y2s - 700 + x2s + y3s >= 900 (s=3)
x1 + y2s - 700 + x2s + y3s >= 800 (s=4)

y21=y22
x21=x22

y23=y24
x23=x24

all variables >=0

32



Structured LP models
Optimization under UncertaintyMore General Case

After taking a first stage decision, a random outcome (scenario) occurring with probability ps
involving one or more of the future data is observed. Then, an optimal second stage decision
(recourse action) depending on the first stage and the scenario s is taken

Example:
• (Stage 1): decide production before the demand and future prices (uncertain) are known.
• (Stage 2): decide whether to sell any excess production at a lower price or extra produce to

make up a shortfall at a higher cost.

(stage 1 variables) Production decisions: x1, x2, ..., xn.
(stage 2 variables) Excess production or shortfall: y1, y2, ..., yn, z1, z2, ..., zn
stage 2 variables will be replicated m times according to each of the possible demand levels
d (1)

j , d (2)
j , ..., d (m)

j with given probabilities ps to occurr.
cj production costs
ej excess costs (eg, storage)
fj shortfall costs (missed opportunity)
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Minimize
∑

j
cjxj +

∑
s

ps

(∑
j

ejy (s)
j +

∑
j

fjz (s)
j

)
subject to

∑
j

aijxj ≤ bi for all production constraints i

xj − y (s)
j + z (s)

j = d (s)
j for all j and s

xj , y (s)
j , z (s)

j ≥ 0 for all j and s
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Minimise the maximum cost we would ever have to pay (minimise the maximum scenario cost).
Z >= 2x1 + (2x21 + 3y21 + 3y31) scenario 1
Z >= 2x1 + (2x22 + 3y22 + 3y32) scenario 2
Z >= 2x1 + (2x23 + 3y23 + 3y33) scenario 3
Z >= 2x1 + (2x24 + 3y24 + 3y34) scenario 4

The objective function would then become minimise Z
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After minimising Z with scenarios that cost less than this maximum cost we may have flexibility
about variable values.

Hence if Z* is the minimum value of Z from this formulation it is appropriate to then solve a
further program:

minimise: total scenario cost

subject to: Z <= Z* and the same constraints as above

i.e. minimise

4(2x1) + (2x21 + 3y21 + 3y31) + (2x22 + 3y22 + 3y32)
+ (2x23 + 3y23 + 3y33) + (2x24 + 3y24 + 3y34)

subject to: Z <= Z* and the same constraints as above
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• Tutorial by Giovanni Pantuso (more theoretical) https://pantuso.sites.ku.dk/talks/

• Example on VRP with stochastic demand

• Talk from gurobi, including robust, value-at-risk and conditional value-at-risk formulations
https://www.gurobi.com/events/
solving-simple-stochastic-optimization-problems-with-gurobi/

• Stochastic Programming community https://www.stoprog.org/
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