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Solving the DFJ FormulationDynamic Programming

• Dynamic Programming (DP) is a technique to solve combinatorial optimization problems with
applications, for example, in mathematical programming, optimal control, and economics

• DP is somehow related to branch-and-bound as it performs an intelligent enumeration of the
feasible solutions of the problem considered

• Principle of Optimality (known as Bellman Optimality Conditions): Suppose that the solution
of a problem is the result of a sequence of n decisions D1,D2, ...,Dn; if a given sequence is
optimal, then the first k decisions must be optimal, but also the last n − k decisions must be
optimal

• DP breaks down the problem into stages, at which decisions take place, and find a recurrence
relation that relates each stage with the previous one
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The TSP asks for the shortest tour that starts from 0, visits all cities of the set C = {1, 2, ..., n}
exactly once, and returns to 0, where the cost to travel from i to j is cij (with (i , j) ∈ A)
If the optimal solution of a TSP with six cities is (0, 1, 3, 2, 4, 6, 5, 0), then...

• the optimal solution to visit {1, 2, 3, 4, 5, 6} starting from 0 and ending at 5 is (0, 1, 3, 2, 4, 6, 5)
• the optimal solution to visit {1, 2, 3, 4, 6} starting from 0 and ending at 6 is (0, 1, 3, 2, 4, 6)
• the optimal solution to visit {1, 2, 3, 4} starting from 0 and ending at 4 is (0, 1, 3, 2, 4)
• the optimal solution to visit {1, 2, 3} starting from 0 and ending at 2 is (0, 1, 3, 2)
• the optimal solution to visit {1, 3} starting from 0 and ending at 3 is (0, 1, 3)
• the optimal solution to visit 1 starting from 0 is (0, 1)

⇝ The optimal solution is made up of a number of optimal solutions of smaller subproblems
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• A solution of a TSP with n cities derives from a sequence of n decisions, where the kth
decision consists of choosing the kth city to visit in the tour

• The number of nodes (or states) grows exponentially with n
• At stage k , the number of states is

(
n
k

)
k!

• With n = 6, at stage k = 6, 720 states are necessary
⇝ DP finds the optimal solution by implicitly enumerating all states but actually generating only
some of them
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If path (0, 1, 2, 3) costs less than (0, 2, 1, 3), the optimal solution cannot be found in the blue part
of the tree
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If path (0, 1, 2, 3, 4, 5) costs less than (0, 1, 2, 4, 3, 5), the optimal solution cannot be found in the
blue part of the tree
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• At stage k (1 ≤ k ≤ n), for each subset of cities S ⊆ C of cardinality k , it is necessary to have
only k states (one for each of the cities of the set S)

• At state k = 3, given the subset of cities S = {1, 2, 3}, three states are needed:
• the shortest-path to visit S by starting from 0 and ending at 1
• the shortest-path to visit S by starting from 0 and ending at 2
• the shortest-path to visit S by starting from 0 and ending at 3

• At stage k ,
(
n
k

)
k states are required to compute the optimal solution (not

(
n
k

)
k!)

#States n = 6
Stage

(
n
k

)
k!

(
n
k

)
k

1 6 6
2 30 30
3 120 60
4 360 60
5 720 30
6 720 6
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• Given a subset S ⊆ C of cities and k ∈ S , let f (S , k) be the optimal cost of starting from 0,
visiting all cities in S , and ending at k

• Begin by finding f (S , k) for |S | = 1, which is f ({k}, k) = c0k ,∀k ∈ C

• To compute f (S , k) for |S | > 1, the best way to visit all cities of S by starting from 0 and
ending at k is to consider all j ∈ S \ {k} immediately before k , and look up f (S \ {k}, j),
namely

f (S , k) = min
j∈S\{k}

{f (S \ {k}, j) + cjk}

• The optimal solution cost z∗ of the TSP is z∗ = mink∈C{f (C , k) + ck0}
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DP Recursion from [Held and Karp (1962)]

1. Initialization. Set f ({k}, k) = c0k for each k ∈ C

2. RecursiveStep. For each stage r = 2, 3, ..., n, compute

f (S , k) = min
j∈S\{k}

{f (S \ {k}, j) + cjk}∀S ⊆ C : |S | = r and ∀k ∈ S

3. Optimal Solution. Find the optimal solution cost z∗ as

z∗ = min
k∈C
{f (C , k) + ck0}

• With the DP recursion, TSP instances with up to 25 - 30 customers can be solved to
optimality; other solution techniques (i.e., branch-and-cut) are able to solve TSP instances
with up to... 85900 customers

• Nonetheless, DP recursions represents the state-of-the-art solution techniques to solve a wide
variety of PDPs
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Solving the DFJ FormulationDantzig, Fulkerson and Johnson (DFJ) Formulation

• Find the cheapest movement for a drilling, welding, drawing, soldering arm as, for example, in
a printed circuit board manufacturing process or car manufacturing process

• n locations, asymmetric cij cost of travel,
Variables:

xij ∈ {0, 1} ∀i , j ∈ V , i ̸= j

Objective:

n∑
i=1

n∑
j=1

cijxij
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Constraints:

• visit all vertices∑
j :j ̸=i

xij = 1 ∀i = 1, . . . , n

∑
i :i ̸=j

xij = 1 ∀j = 1, . . . , n

• cut set constraints∑
i∈S

∑
j ̸∈S

xij ≥ 1 ∀S ⊂ N,S ̸= ∅

• subtour elimination constraints∑
i∈S

∑
j∈S

xij ≤ |S | − 1 ∀S ⊂ N, 2 ≤ |S | ≤ n − 1
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min
∑
(ij)∈A

cijxij (1)

∑
i :i ̸=j

xij = 1 ∀j = 1, . . . , n (2)

∑
j :i ̸=j

xij = 1 ∀i = 1, . . . , n (3)

ui − uj + nxij ≤ n − 1, ∀i , j = 2, 3, . . . , n, i ̸= j (4)
xij ∈ B ∀ij ∈ A (5)
ui ∈ R ∀i = 1, . . . , n (6)
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Single commodity flow. gij ∈ R+ sequence variables (is 0 if xij = 0 otherwise it indicates the
number of arcs included on the path from vertex 1 up to arc (i , j))

min
∑
(ij)∈A

cijxij (7)

∑
i :i ̸=j

xij = 1 ∀j = 1, . . . , n (8)

∑
j :i ̸=j

xij = 1 ∀i = 1, . . . , n (9)

n∑
j=1

gji −
n∑

j=2

gij = 1 ∀i = 2..n (10)

gij ≤ (n − 1)xij ∀ij ∈ A (11)
xij ∈ B ∀ij ∈ A (12)
gij ∈ R+ ∀ij ∈ A (13)
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• similar to precedent, also a single commodity flow formulation
• yij : flow from city i to city j
• f : gain in flow from city i to city j

min
∑
ij∈A

cijxij (14)

∑
j :ji∈A

yji ≥ 1 ∀i = 2, . . . , n (15)

∑
j :ij∈A

yij −
∑
j :ji∈A

yji = f ∀i = 2, . . . , n (16)

∑
ij∈A

xij ≤ n (17)

yij ≤ (1 + n f )xij ∀ij ∈ A (18)
xij ∈ B ∀ij ∈ A (19)
yij ∈ R+ ∀ij ∈ A (20)
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• Indices: i , jk for cities, t for step
• xijt = 1 if we drive from city i to city j at step t, else 0.

min
∑
ij∈A

∑
t

cijxijt (21)

∑
i

xijt −
∑
k

xj,k,t+1 = 0 ∀j and t = 1, . . . , n (22)∑
j

∑
t

xijt = 1 ∀i = 1, . . . , n (23)

xijt ∈ B ∀ij ∈ A, t (24)
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Dual bounds

Instance DFJ MTZ Svestka Dantzig
ran20points 3182.2 2538.8 1087.7 2504.1
dantzig42.dat 2538.8 1032.8 2504.2
berlin52.dat
bier127.dat
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• E = {i , j | i ∈ V , j ∈ V , i < j}

(TSPIP) min
∑

cijxij

s.t.
∑

ij∈δ(i)

xij +
∑

ji∈δ(i)

xji = 2 for all i ∈ V

∑
ij∈E(S)

xij ≤ |S | − 1∀ for all ∅ ⊂ S ⊂ V , 2 ≤ |S | ≤ n − 1

xij ∈ {0, 1} for all ij ∈ E
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• relax the set of sub-tour
elimination constraints

• S = {∅ ⊂ S ⊂ V }
• S ′ ⊂ S

(RTSPIP) min
∑

cijxij

s.t.
∑

ij∈δ(i)

xij +
∑

ji∈δ(i)

xji = 2 for all i ∈ V

∑
ij∈E(S)

xij ≤ |S | − 1 for all S ∈ S ′

xij ∈ {0, 1} for all ij ∈ E

• relax the integrality
constraint

(RTSPLP) min
∑

cijxij

s.t.
∑

ij∈δ(i)

xij +
∑

ji∈δ(i)

xji = 2 for all i ∈ V

∑
ij∈E(S)

xij ≤ |S | − 1 for all S ∈ S ′

xij ∈ R+ for all ij ∈ E
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set S ′ = ∅
1. x∗ ←− Solve RTSPIP(S ′)
2. µk ,S ←− Solve SEP(x∗)

if µk < 2 then set S ′ = S ′ ∪ S and go to 1
else return optimal solution x∗

SEP: connected components or number of cycles

In gurobi and cplex implementation via Lazy constraints (Model.cbLazy) and call back function called
when MIPSOL. See script: tsp_gurobi_lazy
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set S = ∅
1. x∗ ←− Solve RTSPLP(S ′)
2. µk ,S ←− Solve SEPLP(x∗)

if µk < 2 then set S ′ = S ′ ∪ S and go to 1
else go to 3

3. branch and bound and repeat 1. and 2. at every node.

SEPLP: LP formulation or Max Flow

In gurobi and cplex implementation via Lazy constraints (Model.cbLazy) and call back functions when
LP solution at node.
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• Is the Asymmetric formulation TUM when all sub-tour elimination constraints are removed?

• Is the Symmetric formulation TUM when all sub-tour elimination constraints are removed?

• Does the DFJ formulation describe the convex hull of the problem?
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minimize cT x subject to

0 ≤ xe ≤ 1 for all edges e,∑
(xe : v is an end of e) = 2 for all cities v ,∑

(xe : e has one end in S and one end not in S) ≥ 2
for all nonempty proper subsets S of cities,∑i=3

i=0(
∑

(xe : e has one end in Si and one end not in Si ) ≥ 10,
for any comb
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A comb can be defined by a handle H and a number of teeth T1,T2, . . . ,Ts such that:

• H,T1,T2, . . . ,Ts ⊆ V

• Tj \ H ̸= ∅ ∀1 ≤ j ≤ s

• Tj ∩ H ̸= ∅ ∀1 ≤ j ≤ s

• Ti ∩ Tj = ∅ ∀i < j ≤ s

• s ≥ 3 and odd

A comb inequality states that (in the two versions, of which only one is needed):

x(δ(H)) +
s∑

j=1

x(δ(Tj)) ≥ 3s + 1 cut set constraints

x(E (H)) +
s∑

j=1

x(E (Tj)) ≤ |H|+
s∑

j=1

|Tj | −
3s + 1

2
subtour elimination constraints

Comb inequalities are valid inequalities for the TSP.
31



24,978 Cities

solved by LK-heuristic and prooved
optimal by branch and cut

10 months of computation on a cluster
of 96 dual processor Intel Xeon 2.8
GHz workstations

http://www.tsp.gatech.edu

http://www.tsp.gatech.edu


24,978 Cities

solved by LK-heuristic and prooved
optimal by branch and cut

10 months of computation on a cluster
of 96 dual processor Intel Xeon 2.8
GHz workstations

http://www.tsp.gatech.edu

http://www.tsp.gatech.edu

	Dynamic Programming
	MILP Formulations
	Solving the DFJ Formulation

