
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

December 15, 2024
Marco Chiarandini

DM545/DM871 – Linear and integer programming

Sheet 8, Autumn 2024

Solution:
Included.
Exercises with the symbol +are to be done at home before the class. Exercises with the symbol ∗will be
tackled in class and should be at least read at home. The remaining exercises are left for self training
after the exercise class.

Exercise 1+ [DT97]
Suppose that in a minimum cost flow problem restrictions are placed on the total flow leaving a node
k , i.e.

θk ≤
∑

(k,j)∈E
xkj ≤ θk

Show how to modify these restrictions to convert the problem into a standard cost flow problem.

Solution:
Bounds on nodes are not possible in our model of min cost flow. However, we can transform the network
by splitting the vertex in two and introducing an arc between the new vertices with the given bounds.

1

DM545/DM871 – Autumn 2024 Assignment Sheet

Exercise 2+

The production plan of a factory for the next year is to produce dt units of product per month t,
t = 1, . . . , 12. Each worker can produce k units of product in a month. The monthly salary is equal to
s. Employing and firing personnel has costs: precisely, employing one person costs p while firing one
costs q. Assuming that initially there are g0 workers, determine the number of workers that must be
present during every month such that the demand is always satisfied and the overall costs of salary,
employment, and firing are minimized.

Solution:
It is possible to model the employment and firing of workers as a flow in a network.

2

DM545/DM871 – Autumn 2024 Assignment Sheet

Exercise 3+ Directed Chinese Postman Problem
Suppose a postman has to deliver mail along all the streets in a small town. Assume furthermore that
on one-way streets the mail boxes are all on one side of the street, whereas for two-way streets, there
are mail boxes on both sides of the street. For obvious reasons the postman wishes to minimize the
distance he has to travel in order to deliver all the mail and return home to his starting point. Show
how you can solve this problem using minimum cost flows. A similar model can be formulated for the
Snow Plow problem or the Salt Spreding problem.

Solution:
The solution to this problem can be found on page 174 of J. Bang-Jensen and G. Gutin. Digraphs: Theory,
Algorithms and Applications, Autumner London, 2009 http://dx.doi.org/10.1007/978-1-84800-998-1_

4. See the extract enclosed in the next pages.
In short, the solution to the Chinese postman problem is a min cost flow that traverses each arc at least
once in a network where arcs are streets and nodes are street instersections.
We must assume that the graph is strongly connected otherwise there is no solution (any closed walk
is strongly connected.)
A digraph where there exists a walk that visits arcs exactly once is called Eulerian.

N = (V , A, l, u = ∞, c)

xij = # of times arc is used

The cost os a min cost circulation in N equals the cost of a Chinese postman walk in D.

3

http://dx.doi.org/10.1007/978-1-84800-998-1_4
http://dx.doi.org/10.1007/978-1-84800-998-1_4

174 4. Flows in Networks

The case |X| = |Y | in Hall’s theorem, the so-called marriage theorem,
was proved much earlier (in 1917) by Frobenius.

Corollary 4.11.4 (The Marriage theorem) [363] A bipartite graph B =
(X,Y ;E) has a matching covering X if and only if |X| = |Y | and (4.25)
holds. 

4.11.2 The Directed Chinese Postman Problem

Suppose a postman has to deliver mail along all the streets in a small14 town.
Assume furthermore that on one-way streets the mail boxes are all on one
side of the street, whereas for two-way streets, there are mail boxes on both
sides of the street. For obvious reasons the postman wishes to minimize the
distance he has to travel in order to deliver all the mail and return home to
his starting point. We show below how to solve this problem in polynomial
time using minimum cost ows.

We can model the problem by a directed graph D = (V,A) and a cost
function c : A→R+ where V contains a vertex for each intersection of streets
in the town and the arcs model the streets. A 2-cycle corresponds to a two-
way street and an arc which is not in a 2-cycle corresponds to a one-way
street in the obvious way. The cost of an arc corresponds to the length of
the corresponding street. Now it is easy to see that an optimal route for the
postman corresponds to a minimum cost closed walk in D which traverses
each arc at least once.

We have seen in Theorem 1.7.2 that if a digraph is eulerian, then it con-
tains a closed trail which covers all arcs precisely once. Thus if D is eulerian,
the optimal walk is simply a eulerian trail in D (using each arc exactly once).
Below we show how to solve the general case by reducing the problem to a
minimum cost circulation problem. First observe that there is no solution to
the problem if D is not strongly connected, since any closed walk is strongly
connected as a digraph. Hence we assume below that the digraph in question
is strong, a realistic assumption when we think of the postman problem.

Let D = (V,A) be a strong digraph and let c be a cost function on A. The
cost c(W) of a walkW is


ij∈A cijwij where wij denotes the number of times

the arc ij occurs on W . Dene N as the network N = (V,A, l ≡ 1, u ≡ ∞, c),
that is, all arcs have lower bounds one, capacity innity and cost equal to
the cost on each arc.

Theorem 4.11.5 The cost of a minimum cost circulation in N equals the
minimum cost of a Chinese postman walk in D.

Proof: Suppose W is a closed walk in D which uses each arc ij ∈ A exactly
wij ≥ 1 times. Then it is easy to see that we can obtain a feasible circulation
of cost c(W) in N just by sending wij units of ow along each arc ij ∈ A.

14 This assumption is to make sure that the postman can carry all the mail in his
backpack, say. Without this assumption the problem becomes much harder.

DM545/DM871 – Autumn 2024 Assignment Sheet

4

4.11 Applications of Flows 175

Conversely, suppose x is an integer feasible circulation in N . Form a
directed multigraph D = (V,A) by letting A contain xij copies of the arc
ij for each ij ∈ A. It follows from the fact that x is an integer circulation that
D is an eulerian directed multigraph (see Figure 4.18). Hence, by Theorem
1.7.2, D has an eulerian tour T . The tour T corresponds to a closed walk W

in D which uses each arc at least once and clearly we have c(W) = cTx. 

a

b c

a

b

d
3

2

2

1

1
1

d

c

(a) (b)

Figure 4.18 An instance of the directed Chinese postman problem. Part (a) shows
a digraph with cost 1 (not shown) on every arc. Part (b) shows the values of a min-
imum cost circulation in the corresponding network. This circulation corresponds
to the postman tour abdacdacbda.

The corresponding problem can be considered for a connected edge-
weighted undirected graph G = (V,E). Here the goal is to nd a tour which
traverses all edges in E at least once and minimizes the total weight of the
tour. It is not hard to see that this problem is equivalent to nding a minimum
cost subset of E so that by duplicating these edges we obtain a supergraph G∗

of G in which all vertices have even degree. This is equivalent to G∗ having an
orientation as a strongly connected eulerian directed multigraph. Edmonds
and Johnson showed how to solve this problem via matching techniques [287]
. Finally there is also the Mixed Chinese Postman problem (MCPP) in
which the input is a mixed graph M = (V,A,E) with weights on the arcs and
edges. Again the goal is to nd minimum cost subsets E ⊆ E and A ⊆ A

so that duplicating these edges and arcs in M results in a mixed supergraph
M∗ of M which can be oriented as a strongly connected eulerian directed
multigraph. A necessary and sucient condition for a mixed graph to have
an orientation as an eulerian directed multigraph is given in Corollary 11.7.4.
The MCCP is NP-hard [741]. From the point of view of practical relevance
the MCPP is probably the most important of the three variants as it directly
models situations such as garbage collection, snow removal, street sweeping,
etc. For an exact algorithm for the MCPP see, e.g., Nobert and Picard [730].

DM545/DM871 – Autumn 2024 Assignment Sheet

5

DM545/DM871 – Autumn 2024 Assignment Sheet

Exercise 4∗ Warehousing of Seasonal Products
A company manufactures multiple products. The products are seasonal with demand varying weekly,
monthly, or quarterly. To use its work-force and capital equipment efficiently, the company wishes
to “smooth” production, storing pre-season production to supplement peak-season production. The
company has a warehouse with fixed capacity R that it uses to store all the products it produces. Its
decision problem is to identify the production levels of all the products for every week, month, or quarter
of the year that will permit it to satisfy the demands incurring the minimum possible production and
storage costs.
We can represent this warehousing problem as a relevant generalization of the min cost network flow
problem encountered in the course.
For simplicity, consider a situation in which the company makes two products and then it needs to
schedule its production for each of the next four quarters of the year. Let d1

j and d2
j denote the demand

for products 1 and 2 in quarter j . Suppose that the production capacity for the jth quarter is u1
j and u2

j ,
and that the per unit cost of production for this quarter is c1

j and c2
j . Let h1

j and h2
j denote the storage

(holding) costs per unit of the two products from quarter j to quarter j + 1.
Represent graphically the network in the two products four periods case and write the Linear Program-
ming formulation of the problem. Which network flows problem models this application? If all input data
are integer, will the solution be integer?

Solution:
We can model this problem as a multicommodity flow in a network. The network has 4 nodes, one for
each quarter, two target nodes for each quarter (one per product), two nodes for each plant and for each
quarter (one per product) and two global sources for the two products.

See page 655 of [AMO].

6

DM545/DM871 – Autumn 2024 Assignment Sheet

Exercise 5∗ Scheduling on Uniform Parallel Machines
We consider scheduling a set J of jobs on M uniform parallel machines. Each job j ∈ J has a processing
requirement pj (denoting the number of machine days required to complete the job), a release data rj
(representing the beginning of the day when job j becomes available for processing), and a deadline
dj ≥ rj + pj (representing the beginning of the day by which the job must be completed). We assume
that a machine can work on only one job at a time and that each job can be processed by at most one
machine at a time. However we allow preemptions (ie, we can interrupt a job and process it on different
machines on different days). The scheduling problem is to determine a feasible schedule that completes
all jobs before their due dates or to show that no such schedule exists.
Formulate the feasible scheduling problem as a maximum flow problem.
It may help to consider an example of the problem, for example, the one given in Table 1.

Job (j) 1 2 3 4
Processing time (pj) 1.5 1.25 2.1 3.6
Release time (rj) 3 1 3 5
Due date (dj) 5 4 7 9

Table 1:

Solution:

See explanation in the solution of the next exercise.

Exercise 6∗ Tanker Scheduling Problem
A steamship company has contracted to deliver perishable goods between several different origin-
destination pairs. Since the cargo is perishable the customers have specified precise dates (ie, delivery
dates) when the shipments must reach their destinations. (The cargoes may not arrive early or late).

7

DM545/DM871 – Autumn 2024 Assignment Sheet

The steamship company wants to determine the minimum number of ships needed to meet the delivery
dates of the shiploads.
Formulate this problem as a network flow problem modeling the example in Table 2 with four shipments.
Each shipment is a full shipload with the characteristics shown in Table 2. For example, as specified
by the first row in this figure, the company must deliver one shipload available at port A and destined
for port C on day 3.

ship- origin desti- delivery
ment nation date

1 Port A Port C 3
2 Port A Port C 8
3 Port B Port D 3
4 Port B Port C 6

C D
A 3 2
B 2 3

A B
C 2 1
D 1 2

Table 2: Data for the tanker scheduling problem: Left shipment characteristics; Center, shipment transit
times; Right return times.

Solution:
Solutions for this and the previous exercise are from [AMO] pages 170-176, enclosed in the next pages.

For Exercise 6 the [AMO] book says that we solve a minimum value problem using a maximum flow
algorithm. The minimum flow problem is very similar to the maximum flow problem: instead of upper
bounds we have lower bounds to flow on arcs and instead of maximizing we are asked to minimize the
flow circulating in the network. More precisely, let N = (V , A, l, u) be a network with source s, sink t
and non-negative lower bounds on the arcs. A minimum feasible (s, t)-flow in N is a feasible (s, t)-flow
whose value is minimum possible among all feasible (s, t)-flows.
In mathematical programming terms a formulation of this problem is very similar to a max flow problem:

z = max xts
∑

j :ji∈A
xij −

∑

j :ij∈A
xji = 0 ∀i ∈ V

xij ≤ uij ∀ij ∈ A
xij ≥ 0 ∀ij ∈ A

z = min xts
∑

j :ji∈A
xij −

∑

j :ij∈A
xji = 0 ∀i ∈ V

(xij ≤ uij) ∀ij ∈ A
xij ≥ ℓij ∀ij ∈ A

What follows is a digression outside of the scope of this course.

Algorithmically, the minimum value problem is solved by solving two the maximum flow problems.

1. Suppose x is a feasible (s, t)-flow. Assume |x| > 0 else there is a trivial solution to the problem
with |x| = 0. We can find x by applying one of the transformations seen in class to remove lower
bounds. The transformation modifies the upper bounds and introduces balancing terms at some
nodes. Then, we can find a feasible flow, not necessarily the one of minimum value, by solving a
max flow problem in this transformed network (with the additional element of having to satisfy the
balance restrictions at the nodes).

2. Let y be the maximum (t, s)-flow in N(x) (hence, a flow backward). Let (T , T) be the min (t, s)-cut
and r(T , T) = |y| be the capacity of the cut.

|y| = r(T , T) =

=
∑

ij∈(T ,T)

(uij − xij) +
∑

pq∈(T ,T)

(xpq − ℓpq)

= u(T , T) − ℓ(T , T) + x(T , T) − x(T , T) =
= u(T , T) − ℓ(T , T) + |x|

From where:

|x| − |y| = ℓ(T , T) − u(T , T)

8

DM545/DM871 – Autumn 2024 Assignment Sheet

|x| − |y| is the flow value obtained by the composition of the two flows x and y. On the other
hand, noting that s ∈ T and t ∈ T , the quantity ℓ(T , T) − u(T , T) identifies the demand of the
network, that is, how much flow has at least to got from s to t. Then, the equality between left
and right hand side, indicates that the composite flow of x and y (in rough terms, x subtracted y),
is the minimum feasible flow satisfying the demand of the network.

For more details you may consult J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and
Applications, Autumner London, 2009 (http://dx.doi.org/10.1007/978-1-84800-998-1_4) from page
185.

9

http://dx.doi.org/10.1007/978-1-84800-998-1_4

The network also contains a source node s and a sink node t. It contains an arc (s,
C) for each node Ci denoting a club, an arc (Ci , R.i) whenever the resident Rj is a
member of the club Ci , and an arc (Rj , P k) if the resident Rj belongs to the political
party Pk • Finally, we add an arc (Pk , t) for each k = 1, ... , 3 of capacity Uk; all
other arcs have unit capacity.

We next find a maximum flow in this network. If the maximum flow value
equals q, the town has a balanced council; otherwise, it does not. The proof of this
assertion is easy to establish by showing that (1) any flow of value q in the network
corresponds to a balanced council, and that (2) any balanced council implies a flow
of value q in the network.

This type of model has applications in several resource assignment settings.
For example, suppose that the residents are skilled craftsmen, the club Ci is the set
of craftsmen with a particular skill, and the political party Pk corresponds to a par-
ticular class. In this instance, a balanced town council corresponds to an
assignment of craftsmen to a union governing board so that every skill class has
representation on the board and no seniority class has a dominant representation.

Application 6.8 Matrix Rounding Problem
This application is concerned with consistent rounding of the elements, row sums,
and column sums of a matrix. We are given a p x q matrix of real numbers D =
{do}, with row sums CXi and column sums !3j. We can round any real number a to the
next smaller integer l a J or to the next larger integer r a 1 , and the decision to round
up or down is entirely up to us. The matrix rounding problem requires that we round
the matrix elements, and the row and column sums of the matrix so that the sum of
the rounded elements in each row equals the rounded row sum and the sum of the
rounded elements in each column equals the rounded column sum. Wf? refer to such
a rounding as a consistent rounding.

We shall show how we can discover such a rounding scheme, if it exists, by
solving a feasible flow problem for a network with nonnegatiVe lower bounds on arc
flows. (As shown in Section 6.7, we can solve this problem by solving two maximum
flow problems with zero lower bounds on arc flows.) We illustrate our method using
the matrix rounding problem shown in Figure 6.2. Figure 6.3 shows the maximum
flow network for this problem. This network contains a node i corresponding to each
row i and a node j' corresponding to each column j. Observe that this network

Row sum

3.1 6.8 7.3 17.2

9.6 2.4 0.7 12.7

3.6 1.2 6.5 11.3

Column sum 16.3 10.4 14.5

Figure 6.2 Matrix rounding problem.

Sec. 6.2 Applications 171

DM545/DM871 – Autumn 2024 Assignment Sheet

10

Figure 6.3 Network for the matrix
rounding problem.

contains an arc (i, j') for each matrix element dij, an arc (s, i) for each row sum,
and an arc (j', t) for each column sum. The lower and the upper bounds of each
arc (i, j') are ldijJ and r dijl, respectively. It is easy to establish a one-to-one cor-
respondence between the consistent roundings of the matrix and feasible flows in
the corresponding network. Consequently, we can find a consistent rounding by
solving a maximum flow problem on the corresponding network.

This matrix rounding problem arises in several application contexts. For ex-
ample, the U.S. Census Bureau uses census information to construct millions of
tables for a wide variety of purposes. By law, the bureau has an obligation to protect
the source of its information and not disclose statistics that could be attributed to
any particular person. We might disguise the information in a table as follows. We
round off each entry in the table, including the row and column sums, either up or
down to a multiple of a constant k (for some suitable value of k), so that the entries
in the table continue to add to the (rounded) row and column sums, and the overall
sum of the entries in the new table adds to a rounded version of the overall sums
in the original table. This Census Bureau problem is the same as the matrix rounding
problem discussed earlier except that we need to round each element to a multiple
of k ;::: 1 instead of rounding it to a multiple of 1. We solve this problem by defining
the associated network as before, but now defining the lower and upper bounds for
any arc with an associated real number a as the greatest multiple of k less than or
equal to a and the smallest multiple of k greater than or equal to a.

Application 6.4 Scheduling on Uniform Parallel
Machines

In this application we consider the problem of scheduling of a set J of jobs on M
uniform parallel machines. Each job j E J has a processing requirement Pj (denoting
the number of machine days required to complete the job), a release date rj (rep-
resenting the beginning of the day whenjobj becomes available for processing), and
a due date dj ;::: rj + pj (representing the beginning of the day by which the job must
be completed). We assume that a machine can work on only one job at a time and
that each job can be processed by at most one machine at a time. However, we

172 Maximum Flows: Basic Ideas Chap. 6

DM545/DM871 – Autumn 2024 Assignment Sheet

11

allow preemptions (i.e., we can interrupt ajob and process it on different machines
on different days). The scheduling problem is to determine a feasible schedule that
completes all jobs before their due dates or to show that no such schedule exists.

Scheduling problems like this arise in batch processing systems involving
batches with a large number of units. The feasible scheduling problem, described
in the preceding paragraph, is a fundamental problem in this situation and can be
used as a subroutine for more general scheduling problems, such as the maximum
lateness problem, the (weighted) minimum completion time problem, and the
(weighted) maximum utilization problem.

Let us formulate the feasible scheduling problem as a maximum flow problem.
We illustrate the formulation using the scheduling problem described in Figure 6.4
with M = 3 machines. First, we rank all the release and due dates, rj and dj for all
j, in ascending order and determine P :::; 2 I J I - 1 mutually disjoint intervals of
dates between consecutive milestones. Let Tk,[denote the interval that starts at the
beginning of date k and ends at the beginning of date 1 + 1. For our example, this
order of release and due dates is 1,3,4,5,7,9. We have five intervals, represented
by T1,2, T3•3 , T4 ,4, T5•6 , and T7 ,8' Notice that within each interval Tk ,[, the set of
available jobs (i.e., those released but not yet due) does not change: we can process
all jobs j with rj :::; k and dj ;::: 1 + 1 in the interval.

Job (j) 1 2 3 4

Processing time (pj) 1.5 1.25 2.1 3.6

Release time (rj) 3 1 3 5

Due date (dj) 5 4 7 9

Figure 6.4 Scheduling problem.

We formulate the scheduling problem as a maximum flow problem on a bipartite
network G as follows. We introduce a source node s, a sink node t, a node corre-
sponding to eachjobj, and a node corresponding to each interval h,[, as shown in
Figure 6.5. We connect the source node to every job node j with an arc with capacity
Pj, indicating that we need to assign Pj days of machine time to job j. We connect
each interval node h,[to the sink node t by an arc with capacity (l - k + I)M,
representing the total number of machine days available on the days from k to I.
Finally, we connect ajob nodej to every interval node h,[if rj :::; k and dj ;::: 1 + 1
by an arc with capacity (I - k + 1) which represents the maximum number of
machines days we can allot to job j on the days from k to I. We next solve a maximum
flow problem on this network: The scheduling problem has a feasible schedule if
and only if the maximum flow value equals pj [alternatively, the flow on every
arc (s, j) is Pj]. The validity of this formulation is easy to establish by showing a
one-to-one correspondence between feasible schedules and flows of value Pj
from the source to the sink.

Sec. 6.2 Applications 173

DM545/DM871 – Autumn 2024 Assignment Sheet

12

Figure 6.5 Network for scheduling
uniform parallel machines.

Application 6.5 Distributed Computing on a
Two-Processor Computer

This application concerns assigning different modules (subroutines) of a program to
two processors in a way that minimizes the collective costs of interprocessor com-
munication and computation. We consider a computer system with two processors;
they need not be identical. We wish to execute a large program on this computer
system. Each program contains several modules that interact with each other during
the program's execution. The cost of executing each module on the two processes
is known in advance and might vary from one processor to the other because of
differences in the processors' memory, control, speed, and arithmetic capabilities.
Let Ui and f3i denote the cost of computation of module i on processors 1 and 2,
respectively. Assigning different modules to different processors incurs relatively
high overhead costs due to interprocessor communication. Let cij denote the inter-
processor communication cost if modules i andj are assigned to different processors;
we do not incur this cost if we assign modules i and j to the same processor. The
cost structure might suggest that we allocate two jobs to different processors-we
need to balance this cost against the communication costs that we incur by allocating
the jobs to different processors. Therefore, we wish to allocate modules of the pro-
gram on the two processors so that we minimize the total cost of processing and
interprocessor communication.

We formulate this problem as a minimum cut problem on an undirected network
as follows. We define a source node s representing processor 1, a sink node t rep-
resenting processor 2, and a node for every module of the program. For every node
i, other than the source and sink nodes, we include an arc (s, i) of capacity f3i and
an arc (i, t) of capacity Ui. Finally, if module i interacts with module j during program
execution, we include the arc (i, j) with a capacity equal to Cij' Figures 6.6 and 6.7
give an example of this construction. Figure 6.6 gives the data for this problem, and
Figure 6.7 gives the corresponding network.

We now observe a one-to-one correspondence between s-t cuts in the network

174 Maximum Flows: Basic Ideas Chap. 6

DM545/DM871 – Autumn 2024 Assignment Sheet

13

i 1 2

rti 6 5

J3i 4 10

(a)

2

0 5

{Cij} = 2 5 0

3 0 6

4 0 2

(b)

Processor 1

3

10

3

3

0

6

0

1

4

4

8

4

0

2

1

0

Program
modules

Figure 6.6 Data for the distributed
computing model.

,
Processor 2

Figure 6.7 Network for the distributed computing model.

and assignments of modules to the two processors; moreover, the capacity of a cut
equals the cost of the corresponding assignment. To establish this result, let AI and
A2 be an assignment of modules to processors 1 and 2, respectively. The cost of this
assignment is LiEAI a; + LiEA213i + LUJ)EAIXA2 Cij' The s-t cut corresponding to
this assignment is ({s} U At. {t} U A2)' The approach we used to construct the
network implies that this cut contains an arc (i, t) for every i E AI of capacity ai,
an arc (s, i) for every i E A2 of capacity 13;, and all arcs (i, j) with i E A I and j E
A2 with capacity Cij' The cost of the assignment Al and A2 equals the capacity of
the cut ({s} U At. {t} U A2)' (We suggest that readers verify this conclusion using

Sec. 6.2 Applications 175

DM545/DM871 – Autumn 2024 Assignment Sheet

14

the example given in Figure 6.7 with Al = {I, 2} and A2 = {3, 4}.) Consequently,
the minimum s-t cut in the network gives the minimum cost assignment of the
modules to the two processors.

Application 6.6 Tanker Scheduling Problem
A steamship company has contracted to deliver perishable goods between several
different origin-destination pairs. Since the cargo is perishable, the customers have
specified precise dates (i.e., delivery dates) when the shipments must reach their
destinations. (The cargoes may not arrive early or late.) The steamship company
wants to determine the minimum number of ships needed to meet the delivery dates
of the shiploads.

To illustrate a modeling approach for this problem, we consider an example
with four shipments; each shipment is a full shipload with the characteristics shown
in Figure 6.8(a). For example, as specified by the first row in this figure, the company
must deliver one shipload available at port A and destined for port C on day 3. Figure
6.8(b) and (c) show the transit times for the shipments (including allowances for
loading and unloading the ships) and the return times (without a cargo) between the
ports.

Ship- Desti- Delivery
ment Origin nation date

1

2

3

4

PortA Port e
PortA Port e
Port B PortD

Port B Port e
(a)

3

8

3

6

e DAB Am eGLJ
BGLJ DGQ

(b) (c)

Figure 6.S Data for the tanker
scheduling problem: (a) shipment
characteristics; (b) shipment transit
times; (c) return times.

We solve this problem by constructing a network shown in Figure 6.9(a). This
network contains a node for each shipment and an arc from node i to node j if it is
possible to deliver shipmentj after completing shipment i; that is, the start time of
shipmentj is no earlier than the delivery time of shipment i plus the travel time from
the destination of shipment i to the origin of shipment j. A directed path in this
network corresponds to a feasible sequence of shipment pickups and deliveries. The
tanker scheduling problem requires that we identify the minimum number of directed
paths that will contain each node in the network on exactly one path.

We can transform this problem to the framework of the maximum flow problem
as follows. We split each node i into two nodes if and i" and add the arc (if, i"). We
set the lower bound on each arc (if, i"), called the shipment arc, equal to I so that
at least one unit of flow passes through this arc. We also add a source node sand
connect it to the origin of each shipment (to represent putting a ship into service),

176 Maximum Flows: Basic Ideas Chap. 6

DM545/DM871 – Autumn 2024 Assignment Sheet

15

(a)

/

Shipment 1 •.•.•.•.•.•.•.•.•.•.•...................

/ --
/ --
" " 3

Shipment 2

(b)

Figure 6.9 Network formulation of the tanker scheduling problem: (a) network offeasible
sequences of two consecutive shipments; (b) maximum flow model.

and we add a sink node t and connect each destination node to it (to represent taking
a ship out of service). We set the capacity of each arc in the network to value 1.
Figure 6.9(b) shows the resulting network for our example. In this network, each
directed path from the source s to the sink t corresponds to a feasible schedule for
a single ship. As a result, a feasible flow of value v in this network decomposes into
schedules of v ships and our problem reduces to identifying a feasible flow of min-
imum value. We note that the zero flow is not feasible because shipment arcs have
unit lower bounds. We can solve this problem, which is known as the minimum
value problem, using any maximum flow algorithm (see Exercise 6.18).

6.8 FLOWS AND CUTS
In this section we discuss some elementary properties of flows and cuts. We use
these properties to prove the max-flow min-cut theorem to establish tKe correctness
of the generic augmenting path algorithm. We first review some of our previous
notation and introduce a few new ideas.

Residual network. The concept of residual network plays a central role in
the development of all the maximum flow algorithms we consider. Earlier in Section
2.4 we defined residual networks and discussed several of its properties. Given a
flow x, the residual capacity rij of any arc (i, j) E A is the maximum additional flow
that can be sent from node i to node j using the arcs (i, j) and (j, 0. [Recall our
assumption from Section 6.1 that whenever the network contains arc (i, j), it also
contains arc (j, i).] The residual capacity rij has two components: (1) Uij - Xij, the
unused capacity of arc (i, j), and (2) the current flow Xji on arc (j, i), which we can
cancel to increase the flow from node i to node j. Consequently, rij = Uij - Xij +
Xji. We refer to the network G(x) consisting of the arcs with positive residual ca-
pacities as the residual network (with respect to the flow x). Figure 6.10 gives an
example of a residual network.

s-t cut. We now review notation about cuts. Recall from Section 2.2 that a
cut is a partition of the node set N into two subsets Sand S = N - S; we represent
this cut using the notation [S, S]. Alternatively, we can define a cut as the set of

Sec. 6.3 Flows and Cuts 177

DM545/DM871 – Autumn 2024 Assignment Sheet

16

DM545/DM871 – Autumn 2024 Assignment Sheet

Figure 1:

Exercise 7 [Goe11]
A managing director has to launch the marketing of a new product. Several candidate products are at
his disposal and he has to choose the best one. Hence, he let each of these products be analysed by
a team made of an engineer and a trader who write a review together. The teams are made along the
graph in Figure 1; each edge corresponds to a product and its endvertices to the engineer and trader
examining it.

a) How many people at least does the managing director gather in order to have the report on all
the products? (The report can be given by either the engineer or the trader.)

b) Assuming now that the report must be done jointly by an engineering and a trader, and that each
engineer and trader can be occupied with only one candidate product, give a polynomial time
algorithm to identify which products will for sure not have the possibility to obtain a report.

Solution:
a) This is an application of the vertex cover problem and its strong duality with maximum matching.
b) This can be done by finding all maximum matching of the graph. The edges that are never in a
matching are those that will be never reviewed. We could solve |E| linear programs formulations of the
max matching problem for bipartite graphs in each of which a different edge is enforced to be in the
solution. Other, more efficient methods based on direct algorithms exist.

Exercise 8
Given the Network in Figure 2, determine the max flow from 1 to 7 and indicate the min cut.

17

DM545/DM871 – Autumn 2024 Assignment Sheet

1

3

2

6

5

4

7

7

11

3

2

7

11

2

5

5
2

7

4

2

6 5

2

3

3

footnotesize
\documentclass{standalone}
\usepackage{tikz}

%%% TIKZ STUFF %%%
\usetikzlibrary{arrows}
\tikzstyle{vertex}=[circle,fill=black!25,minimum size=20pt,inner sep=0pt]
\tikzstyle{selected vertex} = [vertex, fill=red!24]
\tikzstyle{edge} = [draw,thick,-]
\tikzstyle{arc} = [draw,thick,->,shorten >=1pt,>=stealth’]
\tikzstyle{arcl} = [draw,thick,->,shorten >=1pt,>=stealth’,bend left=25]
\tikzstyle{arcr} = [draw,thick,->,shorten >=1pt,>=stealth’]
\tikzstyle{weight} = [font=\small]
\tikzstyle{selected edge} = [draw,line width=5pt,-,red!50]
\tikzstyle{ignored edge} = [draw,line width=5pt,-,black!20]
%%% TIKZ STUFF %%%

\begin{document}

\begin{tikzpicture}[scale=0.9, auto,swap]
% First we draw the vertices

\foreach \pos/\name in {{(0,3)/1}, {(3,1)/3}, {(3,5)/2},
{(6,0)/6}, {(6,3)/5}, {(6,6)/4}, {(9,3)/7}}

\node[vertex] (\name) at \pos {\name};
% Connect vertices with edges and draw weights
\foreach \source/ \dest /\weight in {
1/2/7, 1/3/11, 2/3/3, 3/6/2,
2/4/7, 2/5/11, 3/4/2, 3/5/5,
4/7/5, 4/5/2, 5/7/7, 6/7/4}

\path[arcr] (\source) -- node[weight] {\weight} (\dest);
\foreach \source/ \dest /\weight in {
3/2/2, 4/3/6, 4/7/5, 5/4/2, 7/5/3, 6/5/3}
\path[arcl,bend right] (\source) edge [bend right=15] node[weight] {\weight} (\dest);

\end{tikzpicture}
\end{document}

Figure 2: Find the maximum flow from 1 to 7. Numbers on arcs are capacity values. [In preparation
for the exam, below the graph you find the excerpt of latex code to produce the picture. You can use it
to experiment whether its use is fast enough for an exam session.]

18

DM545/DM871 – Autumn 2024 Assignment Sheet

Solution:
See https://github.com/DM871/dm871.github.io/blob/main/notebooks/net_flow.ipynb.

Exercise 9
Consider the following IP problem:

max 4x1 + 7x2
s.t. x1 + 3x2 ≤ 12

4x1 + 6x2 ≤ 27
4x1 + 2x2 ≤ 20
x1, x2 ≥ 0, x1, x2 ∈ Z

(1)

Subtask a

Give a heuristic primal bound and describe how you determined it.

Solution:
x = [0, 0] is feasible because it satisfies all constraints and has value z = 0. This is a lower bound to
the optimal solution.

Subtask b

Write the LP relaxation (2lp) of (2) to obtain a dual bound. Explain the relation between the optimal
solution of (2lp) and the optimal solution of (2).

Solution:
We relax x1 and x2. The problem (2lp) becomes:

max zLP = 4x1 + 7x2
s.t. x1 + 3x2 ≤ 12

4x1 + 6x2 ≤ 27
4x1 + 2x2 ≤ 20
x1, x2 ≥ 0

(2)

(2lp) gives an upper bound to the problem (2).

Subtask c

Write the first simplex tableau of (2lp) and indicate which variables constitute a basic solution. Call s1,
s2, s3 the slack variables.

Subtask d

Explain which variable leaves the basis and which variable enters the basis in the first iteration of
the simplex algorithm with largest coefficient pivot rule. Show that the answer would be the same if,
instead, the largest increase pivot rule was used.

Subtask e

After a number of iterations the tableau is the following:

x1 x2 s1 s2 s3 -z b

0 1 2/3 -1/6 0 0 7/2

1 0 -1 1/2 0 0 3/2

0 0 8/3 -5/3 1 0 7

0 0 -2/3 -5/6 0 1 -61/2

Argue that an optimal solution for (2lp) has been found and give for it the value of x1 and x2 together
with its objective function value. Report the optimality gap for (2) at this stage.

19

https://github.com/DM871/dm871.github.io/blob/main/notebooks/net_flow.ipynb

DM545/DM871 – Autumn 2024 Assignment Sheet

Subtask e

Show how you can reconstruct the tableau at the previous point by just knowing that x2, x1 and s3 are
in basis and that:

A−1
B =




2/3 −1/6 0
−1 1/2 0
8/3 −5/3 1



 .

Solution:

import numpy as np

from fractions import Fraction as f

A=np.array([[1, 3,0],[4, 6,0],[4,2,1]])

print np.linalg.inv(A)

A_1= np.array([[f(2,3),f(-1,6),0],[f(-1),f(1,2),0],[f(8,3),f(-5,3),1]])

print np.dot(A[:,[1,0,2]],A_1)

Subtask f

From the second row of the last tableau derive a Gomory cut and write it in the space of the original
variables.
Argue shortly that the cut is a valid inequality for (2) and that it will make the current optimal solution
of (2lp) infeasible.

Subtask g

Introduce the cut in the tableau and explain how the solution algorithm will continue. Indicate the new
pivot and explain how you found it. (You do not need to carry out the simplex iteration.)

Subtask h

After the introduction of the cut the tableau of the optimal solution to the new LP problem is the
following.

x1 x2 s1 s2 s3 s4 -z b

0 1 2/3 0 0 -1/3 0 11/3

0 0 0 1 0 -2 0 1

0 0 8/3 0 1 -10/3 0 26/3

1 0 -1 0 0 1 0 1

0 0 -2/3 0 0 -5/3 1 -89/3

Explain how the solution process would continue from this stage by branch and bound. Define the next
branching and indicate what can be done in each open node.

Solution:

20

DM545/DM871 – Autumn 2024 Assignment Sheet

21

DM545/DM871 – Autumn 2024 Assignment Sheet

22

DM545/DM871 – Autumn 2024 Assignment Sheet

References
[DT97] George B. Dantzig and Mukund N. Thapa. Linear Programming. Springer, 1997.

[Goe11] Michel X. Goemans. Lecture notes on bipartite matching. http://www-math.mit.edu/

~goemans/18433S11/matching-notes.pdf, 2011.

23

http://www-math.mit.edu/~goemans/18433S11/matching-notes.pdf
http://www-math.mit.edu/~goemans/18433S11/matching-notes.pdf

