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Summary

Derivation:
1. economic interpretation
bounding
multipliers
recipe
Lagrangian

ok~ wnN

Theory:
® Symmetry
Weak duality theorem
Strong duality theorem
Complementary slackness theorem

® Economic interpretation
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Derivation
Dual Simplex

Lagrangian Duality Semaiciey Analyss

Relaxation: if a problem is hard to solve then find an easier problem resembling the original one
that provides information in terms of bounds. Then, search for the strongest bounds.

min 13x; + 6x + 4x3 +12x4
2x1 +3x0 +4x3 + bxp =7
3X1 + + 2X3 + 4X4 =2
X1,X2,X3,%Xs4 > 0

We wish to reduce to a problem easier to solve, ie:

min c1x1 + Cxo + ... +CpXn
X17X2',"'7XI120

solvable by inspection: if ¢; < 0 then x; = 400, if ¢; > 0 then x; = 0.
Measure of violation of the constraints:

7 — (2x1 + 3x2 + 4x3 + 5xq)
2 —(3x1 + + 2x3 + 4xq)
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We relax these measures in obj. function with Lagrangian multipliers y1, y».
We obtain a family of problems:

13x3 + 6x2 + 4x3 + 12x4
PR(y1,y2) = min - +y1(7T— 2x1 — 3% — 4x3 — bxq)
2= —|—_y2(2— 3X1 — 2X3 — 4X4)

L. for all y1,y2 € R : opt(PR(y1,y2)) < opt(P)
2. maxy, y,cr{opt(PR(y1,y2))} < opt(P)

PR is easy to solve.
(It can be also seen as a proof of the weak duality theorem)
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(13 —=2y1 — 3y2) x1
+ (6 —3n ) X2
PR(yl,yQ) = min -0 + (4 — 4)/1 — 2y2) X3
23X = + (12 — 5y1 — 4_)/2) X4
+ i+ 2y

if coefficient of x is < 0 then bound is —oc then LB is useless
(13 — 2y1 — 3y2) Z 0
(6 —3y1 )>0
(4 — 4_)/1 — 2_)/2) Z 0
(12 — 5y; — 4y,) > 0
If they all hold then we are left with 7y; + 2y, because all go to 0.

max 7y; + 2y»

2y1 +3y2 <13
3 < 6
4y1 + 2y, < 4
Sy1 +4y> <12

Derivation
Dual Simplex
Sensitivity Analysis
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General Formulation

min z=c'x ceR"”
Ax=b AcR™" beR™
x>0 x eR"

; T T
b—A
yrg%{xrg&{c x+y'( x)}}

: T T T
—yTA b
yn;%ﬁxrgﬁ& {(c’ =y "A)x+y'b}}

max b’y
ATy <c
yeR™

Derivation
Dual Simplex
Sensitivity Analysis
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Deriva tion
Dual Simplex

D ua I S i m p|ex Sensitivity Analysis

® Dual simplex (Lemke, 1954): apply the simplex method to the dual problem and observe what
happens in the primal tableau:

min{b"y | ATy > c",y >0}
—max{—b"y | -ATy < —c,y >0}

max{c’x | Ax < b,x > 0}

® \We obtain a new algorithm for the primal problem: the dual simplex
It corresponds to the primal simplex applied to the dual
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Derivation

Primal Simplex on Dual Problem Dual Simplex

Example

Primal:

max —Xi3 — X2
—2x1 — X2
—2x1 + 4xo

—x1 + 3x2

® |nitial tableau

| | x1 | x2 | wi |
[P ——
| -2 1 -11 1]
| | -2 1 41 ol
I 1 -11 31 01
e
Il -11-11 0l

infeasible start

® x; enters, w» leaves

X1, X2

| w3
[
ol o
11 0
ol 1
[
ol o

IV AN INAIA

—_— —— — 4 —

Sensitivity Analysis

Dual:
min  4y; — 8y» — Ty3

—2y1 =22 — y3 > -1

—y1 +4y2 +3y3 > —1

yi,y2,y3 2> 0

® |nitial tableau (min by = — max —by)

| l'yi1 1l y21y3lzt|z2]-plbl
gy S — |

| | 21 21 1| 1| ol ol 1]

| | 11 -41-3] ol 1] ol 1]
|

| | -41 81 71 ol ol 1101

feasible start (thanks to —x; — x2)

® y, enters, z; leaves
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Dual Simplex

® > enters, z; leaves

® x; enters, w» leaves

| z2
0
1
0

z1
-12

y3 |
11051 0.5
ol -1
3

1
5 | |
S
|

| y1 | y2 |

0
0
1
0

w2 | w3
-1
-0.5 |

-0.5 |
-0.5 |

1
0|
0|
0|

-3 1

| x2 | w1 |
o
|

0
1
0
0

| x1

® ys enters, y» leaves

® 1, enters, ws leaves

| -7

-P
-18 1 -6 ol -71 o1l 1

o bbb
|
|
P

0
0
0|

| w3 |

| -2

| -1

| -2
-1

| w2
1 0
ol O
ol 1
ol 0

-7 1

31

2|
S S S

-4 |

| x2 | wi

0
1

o

| x1
0

(note that we kept ¢; < 0, ie, optimality)
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Derivation

. . Dual Simplex
Dual Simplex on Primal Problem Sensitiviy Anaysi

Primal simplex on primal problem: Dual simplex on primal problem:
. 1. pivot <0
1. pivot >0 P
2. col ¢; with wrong sign 2. row b; <0
' J & 5ig (condition of feasibility)

N O P .

3. row: mln{a/j.au>0,l 1,..,m} 3. col: min{‘%‘Za/j<0~,j:172a~~=”+m}

ij
(least worsening solution)
® Primal works with feasible solutions towards optimality
L)

Dual works with optimal solutions towards feasibility
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. Dual Simplex
Dual Simplex y

1. (primal) simplex on primal problem (the one studied so far)

2. Now: dual simplex on primal problem = primal simplex on dual problem
(implemented as dual simplex, understood as primal simplex on dual problem)

Uses of the Dual Simplex:

® The dual simplex can work better than the primal in some cases.

Eg. since running time in practice between 2m and 3m, then if m = 99 and n = 9 then better
the dual

® Infeasible start
Dual based Phase | algorithm (Dual-primal algorithm)
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Dual based Phase |

Example:

Derivation
Dual Simplex
Sensitivity Analysis

maximize z = x; — x»

subject to x; + xp < 2
2X1 + 2X2 Z 2
x1,%2 >0
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Summary

Derivation:

1.

2
3.
4

bounding

. multipliers

recipe

. Lagrangian

Theory:

Symmetry

Weak duality theorem

Strong duality theorem
Complementary slackness theorem

Dual Simplex

Sensitivity Analysis, Economic interpretation

Dual Simplex
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3. Sensitivity Analysis
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Sensitivity Analysis

aka Postoptimality Analysis

Instead of solving each modified problem from scratch, exploit results obtained from solving the
original problem.

max{c'x | Ax = b,l < x < u} (*)

() changes to coefficients of objective function: max{é’x | Ax = b, | < x < u} (primal)
x* of (*) remains feasible hence we can restart the simplex from x*

(1) changes to RHS terms: max{c x| Ax = b, | < x < u} (dual)
x* optimal feasible solution of (*)
basic sol x of (Il): Xy = x};, AgXg = b— Ayxy
% is dual feasible and we can start the dual simplex from there. If b differs from b only slightly
it may be we are already optimal.
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(1) introduce a new variable: primal)
6 7
max chxj max quj
j=1 j=1
6 7
Za"ij:bivi:]-a“w:; Zainj:bi, I':l,...73
j=1 j=1
IJSXJSUMJ:]-776 IJSXJSUJ~1:1777
[x1,...,xg] feasible [x1,...,xg,0] feasible
(IV) introduce a new constraint: (dual)
o [x{,...,xs] optimal
= [x{,...,Xs, X7, xg|dual feasible

6 6
* *
g asjxj = bs X7 = ba — § a4jX;
j=1 Jj=1

< x < u i=7,8 o
=X > 4j J s ngbszastj*
j=1
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Derivation
Dual Simplex

Examples Sensisivy Analysi

(1) Variation of reduced costs:

max 6x; + 8xp ‘
5x1 + 10x < 60 axex3xa—z b
4 + 4xo <40 x3/5101 0 0 60

|
= 0 420109

The last tableau gives the possibility to
estimate the effect of variations %01 i/5 Z1/a 0 2~
x!10-1/51/2 0 8

100 —2/5 -1 1 —64
For a variable in basis the perturbation goes unchanged in the red. costs. Eg:
N2
max (6 +0)x; +8xx = & =1(6+9) — : 5—-1.-4=9¢

then need to bring in canonical form and hence ¢ changes the obj value.
For a variable not in basis, if it changes the sign of the reduced cost = worth bringing in basis
—the § term propagates to other columns
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.........
Dual Si mpl:x
Sensitivity Analysis

(1) Changes in RHS terms

‘
IX1 X2 X3 X4 —2 b

x3/5101 0 0 60446
xal4 4 01 0 40+e

%0 1 1/5 —1/4 0 2+1/50 —1/4c
1l 0 -1/5 1/2 0 8-1/56+1/2€

100 -2/5 —1 1 —64—2/55—¢
(It would be more convenient to augment the second. But let's take ¢ = 0.)
If 60 + 0 =-all RHS terms change and we must check feasibility
Which are the multipliers for the first row?k; = %, ko = —;11, ks=0
l: 1/5(60+6) —1/4-40+0-0=12+ /5 —10 =2+ 6/5
II: =1/5(60446)+1/2-404+0-0=—-60/5+20—4§/5=8—1/5
Risk that RHS becomes negative
Eg: if 6 = —10 =—tableau stays optimal but not feasible =—apply dual simplex

28



Derivation

Sensitivity Analysis

Dual Simplex

Graphical Representation

f.o.

/56

64 4.2
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Sensitivity Analysis

(111) Add a variable

max b5xg + 6x1 + 8x»
6x0 + 5x1 + 10x, < 60
8X0 + 4X1 + 4X2 S 40
X0, X1, X2 2 0

Reduced cost of xp? ¢; + > mia; = +1-5— -6+ (-1)8 =%

To make worth entering in basis:
® increase its cost

® decrease the technological coefficient in constraint [I: 5 —2/5-6 — axg > 0
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(IV) Add a constraint

max 6x; + 8xo
5x; + 10x < 60
4X1 + 4X2 S 40
5X1 + 6X2 S 50
X1, X2 Z 0

Final tableau not in canonical form, need to iterate with dual simplex

IX] X2 X3 Xs Xs —z b

xJGT"lfgti/f"*oﬁfzh
xi110-1/51/2 0 8
100-1/5 -1 10 -2

TT00-2/5 -1 0 1 —64
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(V) change in a technological coefficient:

X1 X2 X3Xa—2z b

x4 4 01 0 40

o first effect on its column
® then look at ¢

® finally look at b

X0 (104+06)1/5+4(—-1/4) 1/5 —1/4 0 2
x!1 (10+06)(=1/5)+4(1/2) -1/5 1/2 0 8
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Relevance of Sensistivity Analysis Sensitvity Analysis

® The dominant application of LP is mixed integer linear programming.

® |n this context it is extremely important being able to begin with a model instantiated in one
form followed by a sequence of problem modifications
® row and column additions and deletions,
® variable fixings

interspersed with resolves
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Summary

Derivation:

1.

ok~ wnN

economic interpretation
bounding

multipliers

recipe

Lagrangian

Theory:

Symmetry

Weak duality theorem

Strong duality theorem
Complementary slackness theorem

Economic interpretation

Dual Simplex

Sensitivity Analysis

Sensitivity Analysis
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