Outline

DM812 METAHEURISTICS

Lecture 12 Cross Entropy Method Continuous Optimization

Marco Chiarandini

Department of Mathematics and Computer Science University of Southern Denmark, Odense, Denmark <marco@imada.sdu.dk> 1. Model Based Metaheuristics Cross Entropy Method

2. Continuous Optimization Numerical Analysis

Cross Entropy Method

Model Based Metaheuristics Continuous Optimization

Model Based Metaheuristics

Continuous Optimization

1. Model Based Metaheuristics Cross Entropy Method

Outline

2. Continuous Optimization Numerical Analysis

Key idea: use rare event-simulation and importance sampling to proceed towards good solutions

- generate random solution samples according to a specified mechanism
- update the parameters of the random mechanism to produce a better "sample"

CE for Optimization

Model Based Metaheuristics Continuous Optimization

Notation:

- $\mathcal S$ finite set of states
- $\bullet~f$ real valued performance functions on ${\mathcal S}$
- $\max_{s \in S} f(s) = \gamma^* = f(s^*)$ (our problem)
- $\{p(s, \theta) \mid \theta \in \Theta\}$ family of discrete probability mass function on $s \in S$
- $E_{\theta}[f(s)] = \sum_{s \in S} f(s)p(s, \theta)$

We are interested in the probability that f(s) is greater than some threshold γ under the probability $p(\cdot, \theta^*)$:

$$\ell = \Pr(f(s) \ge \gamma) = \sum_{s} I\{f(s) \ge \gamma\} p(s, \theta') = E_{\theta'} \left[I\{f(s) \ge \gamma\} \right]$$

if this probability is very small then we call $\{f(s) \geq \gamma\}$ a rare event

Model Based Metaheuristics Continuous Optimization

• How to determine *g*? Best choice would be:

$$g^*(s) := \frac{I\{f(s) \ge \gamma\}p(x, \theta')}{l},$$

as substituting $\hat{\ell} = \frac{1}{N} \sum_{i=1}^{N} I\{f(s_i) \ge \gamma\} \frac{p(s, \theta')}{g^*(s)} = \ell$. But ℓ is unknwon.

- It is convinient to choose g from $\{p(\cdot, \pmb{\theta})\}$
- Choose the parameter $\pmb{\theta}$ such that the difference of $g=p(\cdot,\pmb{\theta})$ to g^* is minimal
- Cross entropy or Kullback Leibler distance, measure of the distance between two probability distribution functions,

$$\mathcal{D}(g^*,g) = E_{g^*} \left[\ln \frac{g^*(s)}{g(s)} \right]$$

Estimation

$$\mathcal{L} = \sum_{s} I\{f(s) \ge \gamma\} p(s, \theta') = E_{\theta'} \big[I\{f(s) \ge \gamma\} \big]$$

Monte-Carlo simulation:

- draw a random sample
- compute unbiased estimator of ℓ : $\hat{\ell} = \frac{1}{N} \sum_{i=1}^{N} I\{f(s_i) \ge \gamma\}$
- \bullet if probability to sample $I\{f(s_i) \geq \gamma\}$ the estimation is not accurate

Importance sampling:

 \bullet use a different probability function g on ${\mathcal S}$ to sample the solutions

•
$$\ell = \sum_{s} I\{f(s) \ge \gamma\} \frac{p(s, \theta')}{g(s)} g(s) = E_g \left[I\{f(s) \ge \gamma\} \frac{p(s, \theta')}{g(s)} \right]$$

• compute unbiased estimator of ℓ :

$$\hat{\ell} = \frac{1}{N} \sum_{i=1}^{N} I\{f(s_i) \ge \gamma\} \frac{p(s, \boldsymbol{\theta}')}{g(s)}$$

Model Based Metaheuristics Continuous Optimization

• Generalizing to probability density functions and Lebesque integrals

$$\min \mathcal{D}(g^*, g) = \min_{\boldsymbol{\theta}} \int g^*(s) \ln g^*(s) ds - \int g^*(s) \ln g(s, \boldsymbol{\theta}) ds$$

• Minimizing the distance by means of sampling estimation leads to:

$$\widehat{\boldsymbol{\theta}} = \operatorname{argmax}_{\boldsymbol{\theta}} E_{\boldsymbol{\theta}^{\prime\prime}} I\{f(s_i) \ge \gamma\} \frac{p(s, \boldsymbol{\theta}^{\prime})}{p(s, \boldsymbol{\theta}^{\prime\prime})} \ln p(s, \boldsymbol{\theta})$$

stochastic program (convex).

In some cases can be solved in closed form (eg, exponential, Bernoulli).

• Same result can be obtained by maximum likelihood estimation over the solutions s_i with performance $\geq \gamma$

$$L = \max_{\boldsymbol{\theta}} \prod_{i=1}^{N} p(s_i, \boldsymbol{\theta})$$

• Estimation via stochastic counterpart:

$$\widehat{\boldsymbol{\theta}} = \operatorname{argmax}_{\boldsymbol{\theta}} \frac{1}{N} \sum_{i=1}^{N} I\{f(s_i) \ge \gamma\} \frac{p(s_i, \boldsymbol{\theta}')}{p(s_i, \boldsymbol{\theta}'')} \ln p(s_i, \boldsymbol{\theta})$$

where s_1, \ldots, s_N is a random sample from $p(\cdot, \theta'')$

- But still problems with sampling due to rare events. Solution: Two-phase iterative approach:
 - construct a sequence of levels $\widehat{\gamma}_1, \widehat{\gamma}_2, \dots, \widehat{\gamma}_t$
 - construct a sequence of parameters $\widehat{ heta}_1, \widehat{ heta}_2, \dots, \widehat{ heta}_t$

such that $\hat{\gamma}_t$ is close to optimal and $\hat{\theta}_t$ assigns maximal probability to sample high quality solutions Cross Entropy Method (CEM):

Define $\widehat{\theta}_0$. Set t = 1

while termination criterion is not satisfied do

generate a sample $(s_1, s_2, \dots s_N)$ from the pdf $p(\cdot; \hat{oldsymbol{ heta}}_{t-1})$

set $\widehat{\gamma}_t$ equal to the (1ho)-quantile with respect to f

$$(\widehat{\gamma}_t = s^{(\lceil (1-\rho)N\rceil)})$$

use the same sample (s_1, s_2, \ldots, s_N) to solve the stochastic program

$$\widehat{\boldsymbol{\theta}}_t = \arg \max_{\mathbf{v}} \frac{1}{N} \sum_{i=1}^N I_{\{f(s_i) \leq \widehat{\gamma}_t\}} \ln p(s_i; \boldsymbol{\theta})$$

Model Based Metaheuristics Continuous Optimization

Continuous Optimization

Model Based Metaheuristics

• Termination criterion: if for some $t \ge d$ with, e.g., d = 5,

```
\widehat{\gamma}_t = \widehat{\gamma}_{t-1} = \ldots = \widehat{\gamma}_{t-d}
```

- Smoothed Updating: $\hat{\theta}_t = \alpha \hat{\theta'}_t + (1 \alpha) \hat{\theta}_{t-1}$ with $0.4 \le \alpha \le 0.9$ θ'_t from the stochastic counterpart
- Parameters:
 - N = cn, n size of the problem (number of choices available for each solution component to decide)
 - c > 1 ($5 \le c \le 10$);
 - $\rho \approx 0.01$ for $n \geq 100$ and $\rho \approx \ln(n)/n$ for n < 100

Example: TSP

- Solution representation: permutation representation
- \bullet Probabilistic model: matrix P where p_{ij} represents probability of vertex j after vertex i
- Tour construction: specific for tours
 - Define $P^{(1)} = P$ and $X_1 = 1$. Let k = 1
- while k < n-1 do
- obtain $P^{(k+1)}$ from $P^{(k)}$ by setting the X_k -th column of $P^{(k)}$ to zero and normalizing the rows to sum up to 1.

Generate X_{k+1} from the distribution formed by the $X_k\mbox{-th}$ row of $P^{(k)}$

- set k = k + 1
- Update: take the fraction of times transition i to j occurred in those paths the cycles that have $f(s) \leq \gamma$

Outline

Model Based Metaheuristics Continuous Optimization Numerical Analysis

Continuous Optimization

1. Model Based Metaheuristics Cross Entropy Method

2. Continuous Optimization Numerical Analysis

- We look at unconstrained optimization of continuous, non-linear, non-convex, non-differentiable functions
- Many applications above all in statistical estimation, (eg, likelihood estimation)
- Typically few variables (curse of dimensionality)

Standard Test Functions

Model Based Metaheuristics Continuous Optimization Numerical Analysis

• Rosenbrock's banana function

$$f(x,y) = (1-x)^2 + 100(y-x^2)^2$$

Global minimum at (x, y) = (1, 1) where f(x, y) = 0

Multidimensional extension is

$$f(x) = \sum_{i=1}^{N-1} \left[(1-x_i)^2 + 100(x_{i+1} - x_i^2)^2 \right] \quad \forall x \in \mathbb{R}^N.$$

Global minimum at $(x_1,\ldots,x_N)=(1,\ldots,1)$

- Rastrigin's
- Schwefel's
- Sphere

Smooth Functions

Gradient Descent $f(\mathbf{x})$ decreases fastest moving in the direction of the negative gradient of f Hence,

 $\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma \nabla f(\mathbf{x}_n)$

converges for appropriate x_0 and for $\gamma_n > 0$ small enough numbers.

 $\bullet\,$ Problem is choosing $\gamma\,$

Secant Method If only one-dimension and f hard to differentiate:

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n).$$

Model Based Metaheuristics Continuous Optimization Numerical Analysis

Model Based Metaheuristics Continuous Optimization Numerical Analysis

Smooth functions Twice differentiable

Model Based Metaheuristics Continuous Optimization Numerical Analysis

Model Based Metaheuristics

Continuous Optimization

Numerical Analysis

Newton's method in one dimension Taylor expansion of f(x):

$$f(x + \Delta x) = f(x) + f'(x)\Delta x + \frac{1}{2}f''(x)\Delta x^2$$

attains its extremum when Δx solves the linear equation:

$$f'(x)+f''(x)\Delta x=0 \qquad {\rm and} f''(x)>0$$

Hence, if x_0 is chosen appropriately, the sequence below converges to x^*

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}, \ n \ge 0$$

Newton's method generalized to several dimensions first derivative \leftarrow gradient $\nabla f(\mathbf{x})$, reciprocal of the second derivative \leftarrow inverse of Hessian matrix, $Hf(\mathbf{x})$

$$\mathbf{x}_{n+1} = \mathbf{x}_n - [Hf(\mathbf{x}_n)]^{-1} \nabla f(\mathbf{x}_n), \ n \ge 0.$$

• Newton's method converges much faster towards a local maximum or minimum than gradient descent.

- However, finding the inverse of the Hessian may be an expensive operation, so approximations may be used instead Quasi-Newton methods
 - Conjugate Gradient [Fletcher and Reeves (1964)]
 - BFGS (variable metric algorithm) [Broyden, Fletcher, Goldfarb and Shanno (1970)]