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Key idea: use rare event-simulation and importance sampling to proceed
towards good solutions

generate random solution samples according to a specified
mechanism
update the parameters of the random mechanism to produce a
better “sample”
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Notation:

S finite set of states

f real valued performance functions on S
maxs∈S f(s) = γ∗ = f(s∗) (our problem)

{p(s,θ) | θ ∈ Θ} family of discrete probability mass function on
s ∈ S
Eθ[f(s)] =

∑
s∈S f(s)p(s,θ)

We are interested in the probability that f(s) is greater than some
threshold γ under the probability p(·,θ∗):

` = Pr(f(s) ≥ γ) =
∑
s

I{f(s) ≥ γ}p(s,θ′) = Eθ′
[
I{f(s) ≥ γ}]

if this probability is very small then we call {f(s) ≥ γ} a rare event
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` =
∑
s

I{f(s) ≥ γ}p(s,θ′) = Eθ′
[
I{f(s) ≥ γ}]

Monte-Carlo simulation:

draw a random sample
compute unbiased estimator of `: ˆ̀= 1

N

∑N
i=1 I{f(si) ≥ γ}

if probability to sample I{f(si) ≥ γ} the estimation is not accurate

Importance sampling:

use a different probability function g on S to sample the solutions

` =
∑
s I{f(s) ≥ γ}p(s,θ′)g(s) g(s) = Eg

[
I{f(s) ≥ γ}p(s,θ′)g(s)

]
compute unbiased estimator of `:

ˆ̀=
1
N

N∑
i=1

I{f(si) ≥ γ}p(s,θ
′)

g(s)
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How to determine g?
Best choice would be:

g∗(s) :=
I{f(s) ≥ γ}p(x,θ′)

l
,

as substituting ˆ̀= 1
N

∑N
i=1 I{f(si) ≥ γ}p(s,θ

′)
g∗(s) = `.

But ` is unknwon.

It is convinient to choose g from {p(·,θ)}

Choose the parameter θ such that the difference of g = p(·,θ) to g∗

is minimal

Cross entropy or Kullback Leibler distance, measure of the distance
between two probability distribution functions,

D(g∗, g) = Eg∗

[
ln
g∗(s)
g(s)

]
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Generalizing to probability density functions and Lebesque integrals

minD(g∗, g) = min
θ

∫
g∗(s) ln g∗(s)ds−

∫
g∗(s) ln g(s,θ)ds

Minimizing the distance by means of sampling estimation leads to:

θ̂ = argmaxθ Eθ′′I{f(si) ≥ γ} p(s,θ
′)

p(s,θ′′)
ln p(s,θ)

stochastic program (convex).
In some cases can be solved in closed form (eg, exponential,
Bernoulli).

Same result can be obtained by maximum likelihood estimation over
the solutions si with performance ≥ γ

L = max
θ

N∏
i=1

p(si,θ)
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Estimation via stochastic counterpart:

θ̂ = argmaxθ

1
N

N∑
i=1

I{f(si) ≥ γ)} p(si,θ
′)

p(si,θ′′)
ln p(si,θ)

where s1, . . . , sN is a random sample from p(·,θ′′).

But still problems with sampling due to rare events.
Solution: Two-phase iterative approach:

construct a sequence of levels bγ1, bγ2, . . . , bγt

construct a sequence of parameters bθ1, bθ2, . . . , bθt

such that γ̂t is close to optimal
and θ̂t assigns maximal probability to sample high quality solutions
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Cross Entropy Method (CEM):

Define θ̂0. Set t = 1

while termination criterion is not satisfied do

generate a sample (s1, s2, . . . sN ) from the pdf p(·; θ̂t−1)

set γ̂t equal to the (1− ρ)-quantile with respect to f

(γ̂t = s(d(1−ρ)Ne))

use the same sample (s1, s2, . . . , sN ) to solve the stochastic program

θ̂t = arg max
v

1
N

N∑
i=1

I{f(si)≤bγt} ln p(si; θ)
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Termination criterion: if for some t ≥ d with, e.g., d = 5,
γ̂t = γ̂t−1 = . . . = γ̂t−d
Smoothed Updating: θ̂t = αθ̂′t + (1− α)θ̂t−1 with 0.4 ≤ α ≤ 0.9
θ′t from the stochastic counterpart
Parameters:

N = cn, n size of the problem (number of choices available for each
solution component to decide)
c > 1 (5 ≤ c ≤ 10);
ρ ≈ 0.01 for n ≥ 100 and ρ ≈ ln(n)/n for n < 100
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Example: TSP

Solution representation: permutation representation
Probabilistic model: matrix P where pij represents probability of
vertex j after vertex i
Tour construction: specific for tours
Define P (1) = P and X1 = 1. Let k = 1
while k < n− 1 do

obtain P (k+1) from P (k) by setting the Xk-th column of P (k)

to zero and normalizing the rows to sum up to 1.
Generate Xk+1 from the distribution formed by the Xk-th row of
P (k)

set k = k + 1
Update: take the fraction of times transition i to j occurred in those
paths the cycles that have f(s) ≤ γ
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We look at unconstrained optimization of continuous, non-linear,
non-convex, non-differentiable functions

Many applications above all in statistical estimation, (eg, likelihood
estimation)

Typically few variables (curse of dimensionality)
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Rosenbrock’s banana function

f(x, y) = (1− x)2 + 100(y − x2)2

Global minimum at (x, y) = (1, 1) where f(x, y) = 0

Multidimensional extension is

f(x) =
N−1∑
i=1

[
(1− xi)2 + 100(xi+1 − x2

i )
2
] ∀x ∈ RN .

Global minimum at (x1, . . . , xN ) = (1, . . . , 1)

Rastrigin’s

Schwefel’s

Sphere

Continue at: http://www.cs.bham.ac.uk/research/projects/ecb/
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Differentiable

Gradient Descent f(x) decreases
fastest moving in the direction of
the negative gradient of f Hence,

xn+1 = xn − γ∇f(xn)

converges for appropriate x0 and for
γn > 0 small enough numbers.

Problem is choosing γ

Secant Method
If only one-dimension and f hard to
differentiate:

xn+1 = xn− xn − xn−1

f(xn)− f(xn−1)
f(xn).
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Continuous Optimization Numerical AnalysisSmooth functions
Twice differentiable

Newton’s method in one dimension
Taylor expansion of f(x):

f(x+ ∆x) = f(x) + f ′(x)∆x+
1
2
f ′′(x)∆x2,

attains its extremum when ∆x solves the linear equation:

f ′(x) + f ′′(x)∆x = 0 andf ′′(x) > 0

Hence, if x0 is chosen appropriately, the sequence below converges to x∗

xn+1 = xn − f ′(xn)
f ′′(xn)

, n ≥ 0

Newton’s method generalized to several dimensions
first derivative ←− gradient ∇f(x),
reciprocal of the second derivative ←− inverse of Hessian matrix, Hf(x)

xn+1 = xn − [Hf(xn)]−1∇f(xn), n ≥ 0.
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Newton’s method converges much faster towards a local maximum
or minimum than gradient descent.

However, finding the inverse of the Hessian may be an expensive
operation, so approximations may be used instead
Quasi-Newton methods

Conjugate Gradient [Fletcher and Reeves (1964)]

BFGS (variable metric algorithm) [Broyden, Fletcher, Goldfarb and
Shanno (1970)]


