
DM812
METAHEURISTICS

Lecture 14

Parallel Metaheuristics
and Other Topics

Marco Chiarandini

Department of Mathematics and Computer Science
University of Southern Denmark, Odense, Denmark

<marco@imada.sdu.dk>

Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive NotesOutline

1. Parallel Computing
Introduction
Parallel Meta-heuristics

2. Optimization under Uncertainty

3. Multi-Objective Optimization

4. Conclusive Notes

Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive Notes

Introduction
Parallel Meta-heuristicsOutline

1. Parallel Computing
Introduction
Parallel Meta-heuristics

2. Optimization under Uncertainty

3. Multi-Objective Optimization

4. Conclusive Notes

Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive Notes

Introduction
Parallel Meta-heuristicsWhy Parallelizing?

Goals of parallel implementations:

reduce running times (speedup: Tm = T1/m)

robustness

partitioning of the search space

diversification

different strategies and tuning at each processor



Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive Notes

Introduction
Parallel Meta-heuristicsParallel Computing

Architectures:

Multiple processors, shared memory
communication through shared memory

Multiple processors, distributed memories
communication through network

Logical platform

SIMD/SISD/MISD/MIMD single/multiple instruction,
single/multiple data

Degree of parallelism
granularity: amount of computation between two communication steps

fine-grained (high speed network or shared memory)

coarse grained (low speed)

Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive Notes

Introduction
Parallel Meta-heuristicsParallel Computing

Programming Languages

parallel programming language
OpenMP, CUDA
sequence of operations applied to some members of an array
appropriate for fine-grained

communication libraries
PVM, parallel virtual machine; MPI, message passing interface
one single processor runs one single process suited for coarse-grained
computation in clusters

thread programming
Java threads
multiple processors, shared memory
suited for medium coarse-grained

Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive Notes

Introduction
Parallel Meta-heuristicsParallel Computing

Need for new algorithms: Adaptation of sequential ones may not achieve
the best performances.

Parallel algorithms are strongly dependent from the architecture for
which they are designed.

Types

data parallelism

functional parallelism

centralized model (master-slave)

distributed model (all data local to
each processor)

Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive Notes

Introduction
Parallel Meta-heuristicsPerformance Measures

Speedup

sm =
T1

Tm
sm =

E[T1]
E[Tm]

sublinear speedup (sm < m)

linear speedup (sm = m)

superlinear speedup (sm > m)

Strong speedup: T1 is the best known sequential algorithm

Weak speedup: T1 is taken from the serial version of the parallel
algorithm

Note: T can be the time to reach a solution of a certain quality



Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive Notes

Introduction
Parallel Meta-heuristicsPerformance Measures

Efficiency

em =
sm
m

linear time: em = 1

iem =
(m− 1)E[Tm−1]

mE[Tm]

Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive Notes

Introduction
Parallel Meta-heuristicsA Preliminary Results

Independent multi-thread strategies: Multiple copies of the same
sequential algorithm

If the random variable
time to find a solution of a certain quality

is exponentially distributed

⇓
linear speedup

Experimentally observed for:

Simulated annealing, iterated local search, for TSP

WalkSAT on random 3-SAT instances

GRASP on max independent set, quadratic assignment, maximum
weighted satisfiability, maximum covering []

Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive Notes

Introduction
Parallel Meta-heuristicsParallel Local Search

Use several processors to concurrently explore the neighborhood graph.
Load balancing and granularity are in this case problem specific.

single walk: fine- to medium-grained tasks
(neighborhood evaluation decomposed and distributed) allows to search
larger neighborhoods. Used often with SA

multiple walks: medium- to coarse-grained tasks
(multiple trajectories each to a different processor)

independent search threads
(multiple trajectories in the complete neighborhood or problem
decomposition by variable fixing)

cooperative search threads

Note: the same classification is used for Meta-heuristics

Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive Notes

Introduction
Parallel Meta-heuristicsExamples

Single walk parallelization

TS for a scheduling problem.

Best improvement ⇒ complete neighborhood examination O(n2) ×
function evaluation (makespan) O(n2)

Neighbors distributed to p processors:

(k − 1)bn/pc+ 1, . . . , (k − 1)bn/pc+ bn/pc k = 1, . . . , p− 1

Genetic algorithm (if evaluation function is costly)

On VRP, different clusters of visits to each processor, construction
of independent routes.

No quality improvement expected
Good load balancing
Less good with first improvement
Possible to perform a multiple steps move
(ie, apply best move found by each processor)



Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive Notes

Introduction
Parallel Meta-heuristicsExamples

Multiple walks independent search applied with

TS to QAP and scheduling
Ejection chains to VRP
GRASP to QAP (different random seeds to each processor)
Scatter Search in island model on QAP
(but no quality improvement observed)
Genetic algorithms in island models

Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive Notes

Introduction
Parallel Meta-heuristicsExamples

Multiple walks cooperative search.
Shared information gathered in central shared memory or dedicated
central processor.
Expected improvements in both quality and speedup.

Which information exchanged?
pool of elite solutions, best solutions and heir costs, attribute frequencies,
tabu lists

Scatter search and Path relinking
Genetic algorithms

island model with communication
migration operation policy: processors involved, frequency of
exchanges solution exchanged

Ant Colony
several ants to each processor update a central pheromone trail
matrix
queen process = master
hierarchy of several queen processes (island model fashion)
overhead

Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive NotesOutline

1. Parallel Computing
Introduction
Parallel Meta-heuristics

2. Optimization under Uncertainty

3. Multi-Objective Optimization

4. Conclusive Notes

Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive NotesOptimization Under Uncertainty

In many real life cases problem data might be uncertain.

Approaches (in decreasing order of information available):

stochastic optimization

dynamic optimization

robust optimization

online optimization

But other factors are relevant to determine the optimization approach.



Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive NotesStochastic optimization

If probability distributions governing the data are known or can be
estimated then it is possible to take advantage of this.

In stochastic optimization the goal is to find some policy that is feasible
for all (or almost all) the possible data instances and maximizes the
expectation of some function of the decisions and the random variables.

Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive NotesSolution approaches

The expected value of the objective function can be computed
mathematically.

g(s) = E[f(π, s)]

where s ∈ S and π are the stochastic variables determining the
possible scenarios.

Then no difference with a deterministic problem. Although the
evaluation function may become computationally prohibitive.

Alternatively, the expected value of the objective function can be
estimated via sampling and simulation

g(s) = f(π, s) =
1
N

N∑
i=1

f(πi, s) (unbiased estimator)

Robust Optimization

If only uncertainty sets rather than probability distributions are known.
Unlike dynamic and stochastic programming this robust approach does
not suffer from the curse of dimensionality

The goal of robust optimization is to find a solution which is feasible for
all such data and optimal in some sense.
For example, it optimizes for the worst-case scenario.
Let the uncertain problem be given by

min{f(x;π) : x ∈ X(π)π ∈ Π}

where Π is some set of scenarios (like parameter values).
The robust optimization model is:

min
x
{max
π∈Π

f(x;π) : x ∈ X(π′)∀π′ ∈ Π}

The policy x is required to be feasible no matter what parameter value
(scenario) occurs; hence, it is required to be in the intersection of all
possible X(Π). The inner maximization yields the worst possible
objective value among all scenarios.

Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive NotesOutline

1. Parallel Computing
Introduction
Parallel Meta-heuristics

2. Optimization under Uncertainty

3. Multi-Objective Optimization

4. Conclusive Notes



Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive NotesMulti-Objective Optimization

A Multi-Objective Combinatorial Optimization Problem (MOCOP) has a
vector as objective function ~f = (f1, . . . , fp).

Example

Given an undirected graph G(V,E) with weights ~d(uv) ∈ Rp for each
edge uv ∈ E.
Find an Hamiltonian cycle H such that

~f(H) =
∑
uv∈H

~d(uv)

is “minimal”.

Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive NotesElements of a MOCOP

the set of feasible candidate solutions S
the objective function vector ~f = (f1, . . . , fp) : S → Rp

the objective space Rp

the ordered space (RP ,�)
the model map θ : Rp → RP

Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive NotesClassification

We distinguish four types of Multiobjective optimization problems
according to the requirements:

min-max optimality (θ : Rp → R)
weighted sum optimality (θ : Rp → R)
lexicographic optimality (θ : Rp → R)
Pareto optimality (θ = I : Rp → Rp)

Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive Notes

Min-Max Optimality

min
s∈S

max
i=1,...,p

fi(s)

Weighted Sum Optimality

min fw(s) =
p∑
i=1

wifi(s)



Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive Notes

Lexicographic optimality

Name Notation Definition
lexicographic order ~y1 <lex ~y

2 ∃i ∈ {1, . . . , p− 1} | y1
k = y2

k

∀k = 1 . . . , i and y1
i+1 < y2

i+1

A solution s ∈ S is lexicographic optimal if there is no s′ ∈ S such that
~f(s′) <lex ~f(s).

lexmins∈S(f1(s), . . . , fp(s))

⇒ Solve objective sequentially by decreasing order of priority and using
the optimal solutions of higher priority objectives as constraints (goal
programming).

Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive Notes

Pareto Optimality

Definitions on dominance relations

In Pareto sense, for two points (vectors) in Rp

~y1 � ~y2 weakly dominates y1
i ≤ y2

i for all i = 1, 2, . . . , p
~y1 ‖ ~y2 incomparable neither ~y1 � ~y2 nor ~y2 � ~y1

Hence a set of solutions yields a set of mutually incomparable points
(i.e., weakly non-dominated points)

A feasible solution s ∈ S is called efficient or Pareto global optimal if
there is no other s′ ∈ S such that ~f(s′) ≤ ~f(s).

Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive NotesOutline

1. Parallel Computing
Introduction
Parallel Meta-heuristics

2. Optimization under Uncertainty

3. Multi-Objective Optimization

4. Conclusive Notes

Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive NotesCraft, Art or Science?

Craft:

How can heuristic methods be devised for a given problem?
How can an algorithm be implemented efficiently?
How can the performance or robustness of the heuristic algorithm be
improved?

Answer: Experience and Computer Science Background

Art:
creativity
ingenuity
aesthetic elegance

complement good knowledge and skillful application.
Also similar to software development.



Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive Notes

Science
Heuristics are pervasive in many areas: complete search algorithms such
as constrain programming, integer programming

which is the heuristic which works best in a given context?
why is it so?

The final goal is not practical but intellectual.
Iterated process:

observe
formulate hypothesis
experiment
build models and theories (evaluated on their explanatory and
predictive power and conceptual simplicity). [A model is never
identical with what it models, is a heuristic device to enable an
understanding of what it models.]

Parallel Computing
Optimization under Uncertainty
Multi-Objective Optimization
Conclusive NotesResearch Topics

Engineering heuristic algorithms
Advanced data stractures
Computational studies
Simplifications, Organization

Problem characteristics and search space
Phase transition
statistical mechanics

Theoretical results and foundations
Run time analysis (worst case, big O)
Components utility
Neighborhoods connetivity and domination
derandomization

New heuristic methods
hybridization with exact methods (CP, IP) [CPAIOR, Matheuristics]

New applications
multiobjective optimization
stochastic problems
robust optimization


