
Brownian Motion

N.J. Nielsen

1 Notation

In these notes we shall in general use standard notation. For every n ∈ N Bn denotes the
Borel algebra on Rn and if (Ω,F , P ) is a probability space, X : Ω→ Rn a random variable,
then we let X(P ) denote the distribution measure (the image measure) on Rn of X, e.g.

X(P )(A) = P (X−1(A)) for all A ∈ Bn. (1.1)

If n ∈ N, we let 〈·, ·〉 denote the canonical inner product on Rn. Hence for all x =
(x1, x2, . . . , xn) ∈ Rn og alle y = (y1, y2, . . . , yn) ∈ Rn we have

〈x, y〉 =
n∑
j=1

xjyj. (1.2)

All vector spaces which occur in these notes are assumed to be real unless otherwise stated.

Finally we let mn denote the Lebesgue measure on Rn and put m = m1.

2 Characteristic functions and the normal distribu-

tion.

We start with the following definition:

Definition 2.1 Let n ∈ N and let µ be a Borel probability measure on Rn. The character-
istic function ϕµ : Rn → C of µ is defined by:

ϕµ(y) =

∫
Rn

ei〈y,x〉dµ(x) for ally ∈ Rn. (2.1)

The following example shows that there is a connection between the Fourier transform and
characteristic functions.
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Example 2.2 Let h ∈ L1(R), h ≥ 0 with
∫∞
−∞ h(x)dx = 1. Put

µ(A) =

∫
A

h(x)dx for all A ∈ B. (2.2)

Then ϕµ(y) =
√

2πĥ(−y) for all y ∈ R where ĥ denotes the Fourier transformen.

The integral transformation theorem gives namely that for all y ∈ R we have:

ϕµ(y) =

∫ ∞
−∞

eiyxdµ(x) =

∫ ∞
−∞

eiyxh(x)dx =
√

2πĥ(−y). (2.3)

We shall need the following theorem which we state without proof (a proof can e.g. be
found in [L, side 199–201]).

Theorem 2.3 The map µ→ ϕµ is one to one.

A classical theorem of Bochner gives together with Theorem 2.3 that the map µ→ ϕµ gives
a one-to-one correspondance between Borel probability measures on Rn and the continuous
non-negative definite functions from Rn to R, taking the value 1 at zero.

Definition 2.4 Let (Ω,F , P ) be a probability space and let X : Ω → Rn be a random
variable. The characteristic function ϕX of X is defined as ϕX = ϕX(P ). This gives

ϕX(y) =

∫
Rn

ei〈y,x〉dX(P ) =

∫
Ω

ei〈y,X〉dP (2.4)

for ally ∈ Rn.

It follows immediately from Theorem 2.3 and Definition 2.4 that two n-dimensional random
variables (not necessarily defined on the same probability space) has the same distribution
if and only if their characteristic functions are identical.

Let us recall that a symmetric, realn× n matrix C is called positive definite if

〈Cx, x〉 > 0 for all x ∈ Rn \ {0}. (2.5)

We shall now define and briefly describe the normal distributed random variables in terms
of charateristic functions. Vi shall mostly use the 1-dimensional case but in proofs involving
independence it is often necessary also to consider multi-dimensional normal distributions.
We make the following definition.

Definition 2.5 Let C be a symmetric, positive definite n×n matrix and let ξ = (ξ1, ξ2, . . . , ξn) ∈
Rn.

An n-dimensional random variable X is said to be normally distributed N(ξ, C) if X has
a density function f given by

f(x) =
1

(2π)n/2(detC)
1
2

exp(−1

2
〈C−1(x− ξ), x− ξ〉) (2.6)
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for all x ∈ Rn.

Example 2.6 Let (Ω,F , P ) be a probability space and let X : Ω→ R be a random variable,
ξ ∈ R og σ > 0. X is said to be normally distributed N(ξ, σ2) if X has a density function
f given by

f(x) =
1

σ
√

2π
exp(− 1

2σ2
(x− ξ)2). (2.7)

Using the next lemma it is relatively easy to see that EX = ξ og V X = σ2.

To justify Definition 2.5 we have to show that the function f given by (2.6) (or (2.7) in the
1-dimensional case) actually is a density function, e.g. that f ≥ 0 og

∫
Rn f dmn = 1. For

this we we need the following lemma which is probably well known from earlier courses in
mathematics

Lemma 2.7 We have the following formula:∫ ∞
−∞

e−
1
2
x2

dx =
√

2π. (2.8)

By substitution in the integral we get:∫ ∞
−∞

exp(− 1

2σ2
(x− ξ)2)dx = σ

√
2π. (2.9)

This Lemma give immediately that the function f given by (2.7) is a density function .
In order to prove that this is also the case in higher dimensions we need a bit of linear
algebra.

Theorem 2.8 The function f given by (2.6) is a density function.

Proof: Let us for simplicity assume that ξ = 0. Since C and therefore also C−1 is
symmetric, Rn has an orthonormal basis (ej)

n
j=1 consisting of eigenvectors for C−1. Let λj

be the eigenvalue of C−1 corresponding to ej. Since C−1 er positive definit, it follows that
λj > 0 for all 1 ≤ j ≤ n. For every x ∈ Rn we have

x =
n∑
j=1

〈x, ej〉ej (2.10)

and therefore

C−1x =
n∑
j=1

λj〈x, ej〉ej (2.11)

and

〈C−1x, x〉 =
n∑
j=1

λj〈x, ej〉2. (2.12)
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Let U : Rn → Rn be defined by

Ux = (〈x, ej〉)nj=1 for all x ∈ Rn. (2.13)

U is an isometry since for all x ∈ Rn we have

‖Ux‖2 =
n∑
j=1

〈x, ej〉2 = ‖
n∑
j=1

〈x, ej〉ej‖2 = ‖x‖2,

and since (ej)
n
j=1 is a basis U is onto as well. We now get:∫

Rn

exp(−1

2
〈C−1x, x〉)dmn(x) =

∫
Rn

exp(−1

2

n∑
j=1

λj〈x, ej〉2)dmn(x) (2.14)

=

∫
Rn

exp(−1

2

n∑
j=1

λj(Ux)2
j)dmn(x)

=

∫
Rn

exp(−1

2

n∑
j=1

λjx
2
j)dmn(x)

=
n∏
j=1

∫ ∞
−∞

exp(−1

2
λjx

2
j)dxj

= (2π)n/2
1√∏n
j=1 λj

= (2π)n/2
1√

detC−1
= (2π)n/2

√
detC,

where we in the third equality have used that the Lebesgue measure mn is rotation invari-
ant (or said in another way: we transform the integral by U which has a Jacobian with
absolute value 1) and in the fifth equality have used Lemma 2.7. 2

The proof of the next theorem is left to the reader:

Theorem 2.9 Let n ∈ N and let ξ og C = (cjk) be as in Definition 2.5. If X = (Xj)
n
j=1

is an n-dimensional random variable, normally distributed N(ξ, C), then

EX = ξ (2.15)

Cov(Xj, Xk) = E(Xj − ξj)(Xk − ξk) = cjk 1 ≤ j, k ≤ n. (2.16)

We now wish to compute the characteristic function of a normally distributed random
variable. We need the following lemma:

Lemma 2.10 For every y ∈ R we have∫ ∞
−∞

e−
1
2

(x−iy)2dx =
√

2π. (2.17)
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Proof: The proof requires complex function theory and we shall only give a sketch.

For every N ∈ N we let RN denote the rectangle in the complex plane determined by the
pointsbestemt ved −N,N , −N − iy og N − iy. Since the function e−

1
2
z2 is holomorphic in

C we get that ∫
∂RN

e−
1
2
z2dz = 0, (2.18)

where we have integrated along the boundary boundary of the rectangle in the positive
direction (anticlockwise). We now write the intgral as the sum of the four line integrals
along the sides of the rectangle. It is readily checked that the integrals along the vertical
sides go to 0 for N →∞. Together with (2.18) this gives∫ ∞

−∞
e−

1
2

(x−iy)2dx =

∫ ∞
−∞

e−
1
2
x2

dx =
√

2π. (2.19)

2

We start by finding the characteristic function for a one-dimensional normally distributed
random variable.

Theorem 2.11 Let (Ω,F , P ) be a probability space and let X : Ω→ R be a random vari-
able. X is normally distributed N(ξ, σ2) if and only if

ϕX(y) = e−
1
2
σ2y2 · eiyξ for all y ∈ R. (2.20)

Proof: Let first X be normally distibuted N(0, 1). We then get that

ϕX(y) =

∫ ∞
−∞

eiyxdX(P )(x) (2.21)

=
1√
2π

∫ ∞
−∞

eiyxe−
1
2
x2

dx

= e−
1
2
y2 1√

2π

∫ ∞
−∞

eiyxe−
1
2
x2 · e

1
2
y2dx

= e−
1
2
y2 1√

2π

∫ ∞
−∞

e−
1
2

(x−iy)2dx = e−
1
2
y2 .

Assume next thatX is normally distributedN(ξ, σ2) and put Z = X−ξ
σ

. Since Z is normally
distributed N(0, 1) and X = ξ + σZ, we get from the above

ϕX(y) =

∫ ∞
−∞

eiyX(w)dP (w) (2.22)

= eiξy
∫ ∞
−∞

eiyσZdP

= eiξyϕZ(σy) = eiξy · e−
1
2
y2σ2

.
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Assume now that ϕX er af formen (2.20) and let Y be normally distributed N(ξ, σ2). From
the already proved it follows that ϕY = ϕX and hence we conclude from Theorem 2.3 that
X has the same distribution as Y . 2

We will now show the theorem analogous to Theorem 2.11 for multi-dimensional normal
distributions.

Theorem 2.12 Let (Ω,F , P ) be a probability space, n ∈ N and X : Ω → Rn a random
variable. If ξ ∈ Rn and C is a symmetric, positive definite n×n matrix, then X is normally
distributed N(ξ, C) if and only if

ϕX(y) = ei〈ξ,y〉 exp(−1

2
〈Cy, y〉) for ally ∈ Rn. (2.23)

Proof: Let first X be normally distributed N(0, C) and (ej)
n
j=1, (λj)

n
j=1 and U be chosen

as in Theorem 2.8. Using (2.12) we find that

√
detC(2π)n/2ϕX(y) =

∫
Rn

exp(i〈y, x〉) exp(−1

2
〈C−1x, x〉)dmn(x) (2.24)

=

∫
Rn

exp(i
n∑
j=1

〈x, ej〉〈y, ej〉) exp(−1

2

n∑
j=1

λj〈x, ej〉2)dmn(x)

= exp(−1

2

n∑
j=1

1

λj
〈y, ej〉2)

∫
Rn

n∏
j=1

exp(−1

2
(
√
λj〈x, ej〉 − i

1√
λj
〈y, ej〉)2)dmn(x)

= exp(−1

2
〈Cy, y〉)

∫
Rn

n∏
j=1

exp(−1

2
(
√
λj(Ux)j − i

1√
λj
〈y, ej〉)2)dmn(x)

= exp(−1

2
〈Cy, y〉)

∫
Rn

n∏
j=1

exp(−1

2
(
√
λjxj − i

1√
λj
〈y, ej〉)2)dmn(x)

= exp(−1

2
〈Cy, y〉)

n∏
j=1

∫ ∞
−∞

exp(−1

2
(
√
λjxj − i

1√
λj
〈y, ej〉)2dxj

= exp(−1

2
〈Cy, y〉)(2π)n/2

√
detC.

In the calculations above we have used Lemma 2.7 and Lemma 2.10.

If X is normally distributed N(ξ, C), then Z = X − ξ is normally distributed N(0, C) so
we find that

ϕX(y) =

∫
Ω

ei〈y,X〉dP =

∫
Ω

ei〈y,ξ+Z〉dP = ei〈ξ,y〉ϕZ(y) = ei〈ξ,y〉e−
1
2
〈Cy,y〉 (2.25)

y ∈ Rn.
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The rest of the proof of the theorem follows from Theorem 2.3. 2

In the following we shal call an n-dimensional random variable X normally distributed
if there exist a ξ ∈ Rn and a non-negative definite matrix C so that ϕX satisfies (2.23).
Hence we do not any longer require that C is invertible. This generalization of normally
distributed random variables is important when we consider linear combinations and limits
of (usual)) normally distributed random variables. We can for example consider a constant
c ∈ R as a normally distributed random variable variabel with mean value c og variance 0.

We shall now characterize n-dimensional normally distributed random variables in terms
of their coordinate functions.

Theorem 2.13 Let (Ω,F , P ) be a probability space and let Xj : Ω → R be random vari-
ables. If X = (X1, X2, . . . , Xn) : Ω→ Rn, then the following two statements are equivalen:

(i) X is normally distributed.

(ii) Every linear combination of the Xj’s is normally distributed..

Proof: (i) =⇒ (ii). Let X be normally distributed N(ξ, C), let t1, t2, . . . , tn ∈ R and put
Y =

∑n
j=1 tjXj. We shall show that Y is normally distributed. If t = (t1, t2, . . . , tn), then

clearly at 〈t,X〉 = Y . With this observation we get for every y ∈ R:

ϕY (y) =

∫ ∞
−∞

exp(iyY )dP =

∫ ∞
−∞

exp(i〈yt,X〉)dP (2.26)

= ϕX(yt) = eiy〈ξ,t〉 exp(−1

2
y2〈Ct, t〉).

Theorem 2.11 now gives that Y is normally distributed with mean value 〈ξ, t〉 og variance〈Ct, t〉.

(ii) =⇒ (i). For every i ≤ j, k ≤ n we put

cjk = E(Xj − EXj)(Xk − EXk) (2.27)

and let C = (ckj), ξ = (EX1, EX2, . . . , EXn). We shal show that X is normally distributed
N(ξ, C).

Let y = (y1, y2, . . . , yn) ∈ Rn be arbitrary. Since 〈y,X〉 =
∑n

j=1 yjXj,it follows from our
assumptions that 〈y,X〉 is normally distributed with E〈y,X〉 = 〈y, EX〉 og variance

0 ≤ V (〈y,X〉) = E(〈y,X − EX〉)2 (2.28)

= E(
n∑
j=1

yj(Xj − EXj))
2

=
∑
j=k

yjykcjk = 〈Cy, y〉.

(2.28) gives in particular that C er non-negative definite.
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Hence using Theorem 2.11 we get

ϕX(y) =

∫
Ω

exp(i〈y,X〉)dP = ϕ〈y,X〉(1) = exp(i〈y, ξ〉 − 1

2
〈Cy, y〉), (2.29)

which according to Theorem 2.12 implies that X is normally distributed N(ξ, C). 2

If N is a family of random variables on a probability space (Ω,F , P ), then the elements in
N are called uncorelated if cov(X, Y ) = E(X − EX)(Y − EY ) = 0 for all X, Y ∈ N . It
is immediate that if N is independent, then the elements in N are uncorelated. We shall
now see that the converse holds for certain sets of normally distributed random variables.

Theorem 2.14 Let (Ω,F , P ) be a probability space and let Xj : Ω → R be random vari-
ables so that X = (X1, X2, . . . , Xn) : Ω → Rn is normally distributed. If Xj’s are uncore-
lated, then they are independent..

Proof: Lad ξ ∈ Rn and let C be the covariance matrix of X. From our assumptions it
follows that it is a diagonal matrix with σ2

j = (V (Xj) in the diagonal. If f denotes the
density function of X and fj denotes the density function of Xj, 1 ≤ j ≤ n,then we have

f(x1, x2, . . . , xn) = (2π)−n/2
n∏
j=1

(
1

σj
) exp(−1

2

n∑
j=1

(
xj
σj

)2) =
∏
j=1

fj(x1, x2, . . . , xn), (2.30)

where we have used Theorem 2.13 to conclude that Xj is normally distributed for every
1 ≤ j ≤ n.

(2.30) shows that {X1, X2, . . . , Xn} is an independent set. 2

If we combine Theorem 2.13 with the above, we get

Theorem 2.15 Let (Ω,F , P ) be a probability space and let M ⊆ L2(P ) be a subspace so
that every Y ∈ M is normally distributed. If N ⊆ M is a subset the elements of which
are uncorelated, then N is independent.

Proof: Let n ∈ N and X1, X2, . . . , Xn ∈ N and put X = (X1, X2, . . . , Xn). Since every
linear combination of the Xj’s belongs to M, X normally distributed according to The-
orem 2.13. Since the Xj’s are uncorelated, they are independent according to Theorem
2.14. This shows that N is an independent set.. 2

The above gives the following very useful corollary.

Corollary 2.16 Let M ⊆ L2(P ) be as in Theorem 2.15 and let N ⊆ M be a subset
the elements of which all have mean value 0. Then N is independ if and only if it is an
orthogonal set.

We also want to mention the folowing well known theorem.
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Theorem 2.17 Let (Ω,F , P ) be a probability space and Xj : Ω→ R independent, normally
distributed random variables. Then the following statements hold:

(i) X = (X1, X2, . . . , Xn) is normally distributed.

(ii) Every linear combination of the Xj’s is normally distributed.

Proof: (i) follow by direct calculation, and (ii) follows from (i) by using Theorem 2.13. 2

We conclude this section with the following theorem which will be very useful for us in the
sequel:

Theorem 2.18 Let (Xk) ⊆ L2(P ) be a sequence of normally distributed random variables.
If Xk → X i L2(P ), then X is normally distributed.

Proof: For every k ∈ N we put ξk = EXk og σ2
k = V (Xk) = ‖Xk‖2

2 − (EXk)
2, ξ = EX

and σ2 = V (X). For evey k ∈ N we get

|ξk − ξ| = |EXk − EX| ≤ E|Xk −X| ≤ ‖Xk −X‖2 (2.31)

and
|‖Xk‖2 − ‖X‖2| ≤ ‖Xk −Xm‖2. (2.32)

Since Xk → X i L2(P ), (2.30) and (2.32) show that ξk → ξ and σ2
k → σ2. We will show

that X is normally distributed N(ξ, σ2). For every y ∈ R we find

|ϕX(y)− ϕXk
(y)| ≤

∫
Ω

|eiyX − eiyXk |dP (2.33)

≤ |y|
∫

Ω

|Xk −X|dP ≤ |y|‖Xk −X‖2 → 0 for k →∞

so that ϕXk
(y)→ ϕX(y) for all y ∈ R.

Since Xk is normally distributed N(ξk, σ
2
k), Theorem 2.11 gives that for every y ∈ R we

have

ϕXk
(y) = exp(iyξk −

1

2
σ2
ky

2)→ exp(iyξ − 1

2
σ2y2). (2.34)

This shows that

ϕX(y) = exp(iyξ − 1

2
σ2y2) for alle y ∈ R, (2.35)

so that X is normally distributed N(ξ, σ2). 2

Remark: In Theorem 2.18it can easily happen that σ = 0 so that X is a constant.
By combining Theorem 2.18 with Theorem 2.13 a multi-dimensional version of Theorem
2.18is readily obtained . This version can however also easily be proved directly in a similar
manner as above.
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3 Brownian Motion

In this section we shall show the existence of the very important stochastic process knoas
Brownian Motion and invistigate its basic properties.

The process is named after the Scottish botanist Robert Brown who in 1827 observed that
when he suspended pollen grains in water, then they moved in an apparent random manner
where they all the time changed directions. Besides discovering this phenomenon he has
not contributed to the development of the mathematical theory for this process

The first attempt to give a mathematical definition of the process was done in 1900 by
the French mathematician Louis Bachelier who was interested in modelling fluctuations in
prices in financial markets and Albert Einstein who in 1905 gave a mathematical model
of the phenomenon observed by Brown. The first mathematical rigorous treatment of this
model was given by Norbert Wiener in 1923 and therefore the process is also often called
the Wiener process.

Since then Brownian motion has played an important role in pure mathematics, applied
mathematics and physics where in particular it is used in Einsteins Relativity Theory.

In mathematical financing Brownian motion has played a dominant role since it is the
generating process of almost all models in this field. This is also the case for the Black-
Scholes model, which as is well resulted in the Nobelprize in economy for its creators.

In the following we let (Ω,F , P ) be a fixed probability space.

Westart with the following definition:

Definition 3.1 A stochastic process in continuous time is a family (Xt)t≥0 of real random
variables defined on a probability space (Ω,F , P ).

Given a stochastic process (Xt)t≥0 we often only consider Xt for t i et interval [0, R].

We shall also need the following definitions:

Definition 3.2 Let(Ft)t≥0 be a family of sub-σ-algebras of F so that Fs ⊆ Ft for alls ≤ t.
A stochastic process (Xt)t≥0 is called adapted if Xt er Ft-measurable for every t ≥ 0.

Definition 3.3 Let (Ft) be as in Definition 3.2 and let (Xt) ⊆ L1(P ) be an (Ft)-adapted
process. (Xt) is called a submartingale if

Xs ≤ E(Xt|Fs) for all s < t. (3.1)

If there for all s < t is equality in (3.1), then (Xt) is called a martingale. (Xt) is said to
be a supermartingale if (−Xt) is a submartingale.

In this course we shall later discuss the theory of martingales in greater detail.

The next definition is important:
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Definition 3.4 A proceess (Xt) on (Ω,F , P ) is called continuous if the function t→ Xt(ω)
is continuous for a.e. t.ω ∈ Ω.

A process (Yt) is said to have a continuous version if there exists a continuous process (Xt)
so that P (Xt = Yt) = 1 for allt ≥ 0. If (Xt) is a process on (Ω,F , P ), then the functions
t→ Xt(ω), ω ∈ Ω are called the paths of the process.

Now it is the time to define the Brownian motion.

Definition 3.5 A real stochastic process (Bt) is called a Brownian motion starting at 0
with mean value ξ and variance σ2 if the following conditions are satisfied:

(i) P (B0 = 0) = 1

(ii) Bt −Bs is normally distributed N((t− s)ξ, (t− s)σ2) for all 0 ≤ s < t.

(iii) Bt1 , Bt2 − Bt1 , . . . Btn − Btn−1 are (stochastically) independent for alle 0 ≤ t1 < t2 <
t3 < · · · tn. (Bt) is called a normalized Brownian motion if ξ = 0 and σ2 = 1.

(Bt) is called a normalized Brownian motion if ξ = 0 and σ2 = 1.

The essential task of this section is of course to prove the existence of the Brownian motion,
i.e. we have to show that there exists a probability space (Ω,F , P ) and a process (Bt) on
that space so that the conditions in Definition 3.5 are satisfied. It is of course enough to
show the existence of a normalized Brownian motion (Bt) for then (ξt+σBt) is a Brownian
motion with mean value ξ and variance σ2. We shall actually show a stronger result, namely
that the Brownian motion has a continuous version. When we in the following talk about
a Brownian motion we will always mean a normalized Brownian motion unless otherwise
stated.

We will use Hilbert space theory for the construction so lets us recall some of its basic
facts.

In the following (·, ·), respectively ‖ ·‖ will denote the inner product, respectively the norm
in an arbitrary Hilbert space H. If we consider several different Hilbert spaces at the
same time it is of course a slight misuse of notation to use the same symbols for the inner
products and norms in these spaces but it is customary and eases the notation.

Lets us recall the polarization formula:

Lemma 3.6 If H is a real Hilbert space, then:

(x, y) =
1

4
(‖x+ y‖2 − ‖x− y‖2) for alle x, y ∈ H. (3.2)

If H is a complex Hilbert space, then:

(x, y) =
1

4
(‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2). (3.3)
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Proof: Calculate the right hand sides! 2

Definition 3.7 Let H1 and H2 be Hilbert spaces. A linear map T : H1 → H2 is called an
isometry if ‖Tx‖ = ‖x‖ for all x ∈ H1.

Using Lemma 3.6 we easily get:

Proposition 3.8 Let H1 and H2 be Hilbert space T : H1 → H2 a linear map. The following
statements are equivalent:

(i) T is an isometry.

(ii) (Tx, Ty) = (x, y) for all x, y ∈ H1.

Proof: (i) =⇒ (ii). Use the polarization formula on (x, y) and (Tx, Ty).

(ii) =⇒ (i). Put y = x. 2

Let us note that it follows from Proposition 3.8 that if T : H1 → H2 is an isometry and
x, y ∈ H1 are orthogonal,then also Tx og Ty are orthogonal.

The next theorem shows how to construct isometries between Hilbert spaces.

Theorem 3.9 Let H1 be a Hilbert space with an orthonormal basis (en) and let (fn) be an
orthonormal sequence in a Hilbert space H2. THen the map T : H1 → H2 defined by

Tx =
∞∑
n=1

(x, en)fn for all x ∈ H1 (3.4)

is an isometry of H1 into H2.

Proof: We must first show that T is well-defined, that is we have to show that the series
in (3.4) is covergent for all x ∈ H1.

For this let x ∈ H1 be arbitrary. since (en) is orthonormal, we have that vil
∑∞

n=1 |(x, en)|2 =
‖x‖2 < ∞ and hence since (fn) is orthonormal we get that

∑∞
n=1(x, en)fn in H2, so that

T is well defined. T is clearly linear since the inner product is linear in the first variable.
In addition we find:

‖Tx‖2 =
∞∑
n=1

|(x, en)|2 = ‖x‖2, (3.5)

which shows that T is an isometry. 2

The next definition is new:

Definition 3.10 Let (Ω,F , P ) be a probability space. A closed subspace H ⊆ L2(P ) is
called a Gaussian Hilbert space if every f ∈ H is normally distributed with mean value 0.

12



Remark: In Definition 3.10 the zero function should be considewred as normally dis-
tributed with variance 0!

The next theorem, which is one of the main theorems shows that the existence of infinite
dimensional Gaussian Hilbert spaces is equivalent to the existence of Brownian motions.

Theorem 3.11 (i) Let (Ω,F , P ) be a probability space so that there exists an infinite
dimensional Gaussian Hilbert space H ⊆ L2(P ). Then there exist isometries from
L2(0,∞) til H and if T : L2(0,∞)→ H is an arbitrary isometry and we put

Bt = T (1[0,t]) for all t ∈ [0,∞[, (3.6)

then (Bt) is a Brownnian motion.

(ii) Let (Ω,F , P ) be a probability space on which there is a Brownian motion. Then there
exist an infinite dimensional Gaussian Hilbert spaceH ⊆ L2(P ) and an isometryT : L2(0,∞)→
H so that (3.6) holds.

Proof:

(i) Since L2(0,∞) is a separable Hilbert space, it has an orthonormal basis (fn) and since
H is infinite dimensional, we can find an orthonormal sequence (gn) ⊆ H (Note, that
all the gn’s are normally distributed N(0, 1) and are independent according to Corollary
2.16). From Theore 3.9 it follows that there exists an isometry S af L2(0,∞) into H so
that Sfn = gn for all n ∈ N.

Let now T : L2(0,∞)→ H be an arbitrary isometry and define (Bt) by (3.6). WE have to
show that the conditions (i)–(iii) of Definition 3.5 are satisfied. Since 0 = T (0) = B0, it is
clear that (i) holds. Next let 0 ≤ s < t. Since Bt − Bs ∈ H, it is normally distribute with
mean value 0 and furthermore we have:∫

Ω

(Bt −Bs)
2dP = ‖Bt −Bs‖2

2 = ‖T (1]s,t])‖2
2 = ‖1]s,t]‖2

2 = (t− s), (3.7)

which shows that Bt −Bs has variance (t− s).

Let now 0 ≤ t1 < t2 < t3 < · · · < tn. Since {1[0,t1], 1]t1,t2], . . . , 1]tn−1,tn]} is an orthonor-
mal set, it follows from Proposition 3.8 that also {T (1[0,t1]), T (1]t1,t2]), . . . , T (1]tn−1,tn])} =
{Bt1 , Bt2−Bt1 , . . . , Btn−Btn−1} is an orthonormal set. Hence Bt1 , Bt2−Bt1 , . . . , Btn−Btn−1

are independent by Corollary 2.16. This shows (i).

(ii). Assume that (Bt)t≥0 is a Brownian motion on (Ω,F , P ) and put H = span{Bt | t ≥
0} ⊆ L2(P ). We shall first show that H is a Gausian Hilbert space. Since all the Bt’s have
mean 0, the same is true for all elements in H. Let first g ∈ span{Bt}.

We can then find 0 < t1 < t2 < · · · < tn and (αj)
n
j=1 ⊆ R so that g =

∑n
j=1 αjBtj . If we

put βj =
∑n

k=j αk for all 1 ≤ j ≤ n, then it is easily seen that

g =
n∑
j=1

βj(Btj −Btj−1
) (Bt0 = 0). (3.8)

13



Since Bt1 , Bt2 −Bt1 , . . . , Btn−Btn−1
are independent it follows from Theorem 2.17 that g is

normally distributed.

Let now g ∈ H be arbitrary. We can then find a sequence gn ⊆ span{Bt} so that gn → g
i L2(P ). The above together with Theorem 2.18 gives that g is normally distributed and
hence we have shown that H is a Gaussian Hilbert space

We will now construct the desired isometry. Let S ⊆ L2(0,∞) be the the subspace of
L2(0,∞) consisting of the step functions. If f ∈ S, we can find 0 = t0 < t2 < · · · < tn og
(αj)

n
j= ⊆ R so that

f =
n∑
j=1

αj1]tj−1,tj ], (3.9)

and we put

Sf =
n∑
j=1

αj(Btj −Btj−1
). (3.10)

It is left to the reader to show that S is a well defined linear map from S til H. If f satisfies
(3.9), then we have

‖Sf‖2
2 = ‖

n∑
j=1

αj(Btj −Btj−1
)‖2

2 =
n∑
j=1

α2
j‖Btj −Btj−1

‖2
2 =

n∑
j=1

α2
j (tj− tj−1) = ‖f‖2

2 (3.11)

which shows that S : S → H is an isometry. We shall now extend S to an isometry
T : L2(0,∞)→ H.

Let f ∈ L2(0,∞). Since S is dense in L2(0,∞), we can find a sequence kan vi (fn) ⊆ S so
that fn → f in L2(0,∞). If n,m ∈ N, then it follows from (3.11) that

‖Sfn − Sfm‖2 = ‖S(fn − fm)‖2 = ‖fn − fm‖2 (3.12)

which shows that (Sfn) is a Cauchy sequence in H, and hence there is an F ∈ H so that
Sfn → F i L2(P ). In order to define Tf = F we must show that F does not depend on
the chosen sequence (fn). For this let (hn) ⊆ S so that hn → f in L2(0,∞). From the
above it follows that limn→∞ Shn exists in H. We now define the sequence (uk) ⊆ S by

u2n−1 = fn, u2n = hn for all n = 1, 2, . . . . (3.13)

It is clear that uk → f i L2(0,∞) and again the above shows that limh→∞ Suk exists in H.
Since both (Sfn) og (Shn) are subsequences of (Suk), we must have:

F = lim
n→∞

Sfn = lim
k→∞

Suk = lim
n→∞

Shn, (3.14)

so that F does not depend on the chosen sequence (fn). Hence we can put stte Tf = F .
It is readily seen that T is a linear map from L2(0,∞) til H so that Tf = Sf for all f ∈ S.
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If f ∈ L2(0,∞) and (fn) ⊆ S again is chosen so that fn → f i L2(0,∞), then it follows
from (3.11) that

‖Tf‖2 = lim
n
‖Sfn‖2 = lim

n
‖fn‖2 = ‖f‖2. (3.15)

Hence T is an isometry and we get directly from (3.10) that T (1[0,t]) = Bt for all t ≥ 0. 2

Remark: If (Bt) is a Brownian motion, T the associated isometry and f ∈ L2(0,∞),
then Tf is called the Ito integral of the deterministic function f with respect to Bt and
is denoted

∫
fdBt. The term deterministic expresses that f only depends on the time

variable t. In a short while we shall extend the Ito integral to certain functions f(t, ω),
t ≥ 0 og ω ∈ Ω. We talk about an integral because of the way the isometry T is constructed
in Theortem 3.11, (ii) which resembles the way one constructs integrals. The Ito integral
plays an important role in mathematical financing.

The existence of infinite dimensional Gaussian Hilbert spaces follows from the next theo-
rem, a part of which will be shown in the appendix.

Theorem 3.12 There exists a probability space (Ω,F , P ) and a sequence (gn) ⊆ L2(P )
consisting of independent random variables which are all normally distributed N(0, 1).
span(gn) is a Gaussian Hilbert space.

Proof: The existence of (Ω,F , P ) and (gn) will be shown in the appendix. Actually we
can put (Ω,F , P ) = ([0, 1],B,m). It follows directly from Theorem 2.17 and Theorem 2.18
that span(gn) is a Gaussian Hilbert space. 2

The next theorem put our results so far together but gives also new information.

Theorem 3.13 Let (Ω,F , P ) be a probability space so that there exists a sequence (gn) ⊆
L2(P ) with the properties from Theorem 3.12. Then there is a Brownian motion on
(Ω,F , P ). More specifically: If (fn) is an arbitrary orthonormal basis for L2(0,∞), then
the series

Bt =
∞∑
n=1

∫ t

0

fn(s)ds gn t ≥ 0 (3.16)

converges in L2(P ) and almost surely for all t ≥ 0. (Bt) is a Brownian motion on (Ω,F , P ).

Proof: It follows directly from the Theorems 3.11 and 3.12 that there exists a Brownian
motion on (Ω,F , P ). Since (fn) is an orthonormal basis for L2(0,∞), there is according
to Theorem 3.9 an isometry T : L2(0,∞)→ L2(P ) so that Tfn = gn. T is given by

Tf =
∞∑
n=1

∫ ∞
0

f(s)fn(s)ds gn, (3.17)

where the series converges in L2(P ). It follows from Theorem 3.11 that Bt = T (1[0,t]) is a
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Brownian motion and equation (3.17) gives that

Bt = T (1[0,t]) =
∞∑
n=1

∫ t

0

fn(s)ds gn for alle t ≥ 0. (3.18)

Since the terms in this sum are independent, have mean value 0 and

∞∑
n=1

E(

∫ t

0

fn(s)ds gn)2 = ‖Bt‖2
2 = t <∞, (3.19)

it follows from classical results in probability theory that the series (3.18) converges almost
surely for every t ≥ 0. 2

We shall now prove that there is a continuous version of the Brownian motion and then we
do not as so far have a free choice of the orthonormal basis (fn) for L2(0,∞). We construct
an orthonormal basis (fn) with the property that there is an A ∈ F with P (A) = 1 so
that if ω ∈ A, then the series in (3.16) converges to Bt(ω) uniformly in t on every compact
subinterval of [0,∞[. Since every term of the series is continuous in t, this will give that
t → Bt(ω) is continuous for all ω ∈ A. The construction of (fn) is based on the Haar
system (an orthonormal basis for L2(0, 1) explained below) with the aid of the Borel-
Cantelli lemma.

In the following we let (h̃m) denote the (non-normalized) be the Haar system, defined as
follows (make a picture!!):

h̃1(t) = 1 for alle t ∈ [0, 1]. (3.20)

For all k = 0, 1, 2, . . . og ` = 1, 2, . . . , 2k we put

h̃2k+`(t) =


1 if t ∈ [(2`− 2)2−k−1, (2`− 1)2−k−1[
−1 if t ∈ [(2`− 1)2−k−1, 2` · 2−k−1[

0 else.

We norm this system in L2(0, 1) and define

h1 = h̃1 h2k+` = 2k/2h̃2k+` for alle k = 0, 1, 2, . . . og ` = 1, 2, 3, . . . , 2k. (3.21)

By direct computation we check that it is an orthonormal system and since it is easy to
see that every indicator function of a dyadic interval belongs to span(hm), it follows that
span(hm) is dense in L2(0, 1). Therefore (hm) is an orthonormal basis for L2(0, 1). It
follows from Theorem 3.13 that if (Ω,F , P ) is a probability space so that there exists a
sequence (gn) ⊆ L2(P ) as in Theorem 3.12, then

Bt =
∞∑
m=1

∫ t

0

hm(s)ds gm 0 ≤ t ≤ 1 (3.22)
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is a Brownian motion for t ∈ [0, 1]. The series converges in L2(P ) and almost surely and
the same is the case if we permute the terms. We should however note that the set with
measure 1 on which the series converges pointwise depends on the permutation. In order
not to get into difficulties with zero sets we shall fix the order of the terms in the sum. We
define

Bt =

∫ t

0

h1(s)ds g1+
∞∑
k=0

2k+1∑
m=2k+1

∫ t

0

hm(s)ds gm
def
=
∑
∗

m

∫ t

0

hm(s)ds gm for alle 0 ≤ t ≤ 1.

(3.23)
and can now show:

Theorem 3.14 (Bt)0≤t≤1 given by (3.23) is a continuous Brownian motion (on [0, 1]).

In the proof of the theorem we need the following lemmas:

Lemma 3.15 For all k ≥ 0 we have 0 ≤
∑2k+1

m=2k+1

∫ t
0
hm(s)ds ≤ 2−k/2−1.

Proof: For every 2k < m ≤ 2k+1 we put Sm(t) =
∫ t

0
hm(s)ds for all 0 ≤ t ≤ 1. If

m = 2k + `, 1 ≤ ` ≤ 2k, then it follows directly from the definition of hm, that the graph
of Sm is an triangle centered in (2` − 1)2−k−1 and with highth 2−k/2−1. For different `’s
these triangles do not overlap. This shows the statement. 2

Lemma 3.16 For all k ≥ 0 we put

Gk(ω) = max{|gm(ω)| | 2k < m ≤ 2k+1} for all ω ∈ Ω. (3.24)

There is a subset Ω̃ ⊆ Ω with P (Ω̃) = 1 so that there to every ω ∈ Ω̃ exists a k(ω) with the
property that Gk(ω) ≤ k for all k ≥ k(ω).

Proof: For every x > 0 we find

P (|gm| > x} =

√
2

π

∫ ∞
x

e−u
2/2du ≤

√
2

π

∫ ∞
x

u

x
e−u

2/2du =

√
2

π
x−1e−x

2/2, (3.25)

which gives:

P (Gk > k) = P (
2k+1⋃

m=2k+1

(|gm| > k) ≤ 2kP (|g1| > k) ≤
√

2

π

1

k
· 2ke−k2/2. (3.26)

Since
∞∑
k=1

P (Gk > k) ≤
√

2

π

∞∑
k=1

k−12ke−k
2/2 <∞,

it follows from the Borel-Cantelli lemma that P (Gk ≤ k from a certain step) = 1. Choos-
ing Ω̃ as this set the statement follows. 2
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Proof of Theorem 3.14: Let Ω̃ be as in Lemma 3.16 and let ω ∈ Ω̃. Then there exists
a k(ω) ≥ 1 so that Gk(ω) ≤ k for alle k ≥ k(ω). If k ≥ k(ω) is now fixed, we find

2k+1∑
m=2k+1

|
∫ t

0

hm(s)ds · gm(ω)| ≤
2k+1∑

m=2k+1

∫ t

0

hm(s)ds ·Gk(ω) ≤ k 2−k/2−1. (3.27)

for all 0 ≤ t ≤ 1. Since
∑∞

k=1 k 2−k/2−1 < ∞, it follows from Weierstrass’ M-test that the

series
∑∞

k=k(ω)

∑2k+1

m=2k+1

∫ t
0
hm(s)dsgm(ω) converges uniformly for t ∈ [0, 1]. This gives that

the series

Bt(ω) =
∑
∗

m

∫ t

0

hm(s)dsgm(ω) (3.28)

also converges uniformly for t ∈ [0, 1] and hence t→ Bt(ω) is continuous. 2

In order to find a continuous Brownian motion on [0,∞[ we define the functions hnm ∈
L2(0+,∞) by

hnm(t) =

{
hm(t− n) for t ∈ [n− 1, n]

0 else
n ∈ N,m ∈ N (3.29)

and note that (hnm)∞m=1 is an orthonormal basis for L2(n−1, n) for all n ∈ N which implies
that (hnm) is an orthonormal basis for L2(0,∞). We have the following theorem:

Theorem 3.17 Let (Ω,F , P ) be a probability space on which there exists a sequence of
N(0, 1)-distributed random variables and let (gnm) be such a sequence. Define:

Bt =
∞∑
n=1

∑
∗

m

∫ t

0

hnm(s)ds gnm for allt ≥ 0. (3.30)

Then (Bt)t≥0 is a continuous Brownian motion.

Proof: Let n0 ∈ N. For every t ∈ [n0, n0 + 1] we find

Bt(ω)−Bn0(ω) =
∑
∗

m

∫ t

n0

hn0m(s)ds gn0m(ω) for all ω ∈ Ω. (3.31)

By Theorem 3.14 There exists a measurable set Ω̃n0 ⊆ Ω with P (Ω̃n0) = 1 so that the series
(3.31) converges uniformly on [n0, n0 + 1] for every ω ∈ Ω̃n0 . This gives that t→ Bt(ω) is
continuous on [n0, n0 + 1] for all ω ∈ Ω̃n0 . If we put Ω̃ =

⋂∞
n=1 Ω̃n, then P (Ω̃) = 1 and if

ω ∈ Ω̃, then t→ Bt(ω) will be continuous on [0,∞[. 2

Let now (Bt) be a Brownian motion and let for every t ≥ 0 Ft denote the σ-algebra
generated by {Bs | 0 ≤ s ≤ t}. We end this section with the following theorem:
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Theorem 3.18 (Bt,Ft) is a martingale.

Proof: Let 0 ≤ s < t. It follows directly from the definition that Bt − Bs is independent
of {Bu | u ≤ s} and therefore also independent of Fs. Hence we find

E(Bt|Fs) = E(Bs|Fs) + E(Bt −Bs|Fs) = Bs + E(Bt −Bs) = Bs (3.32)

2

4 Appendix

In this section we shall prove that there exists a sequence of independentN(0, 1)-distributed
random variables on ([0, 1],B,m). We first define the following sequence of functions
(random variables) on [0, 1]:

For all n = 1, 2, . . . og k = 1, 2, . . . , 2n−1 we put

un(t) =

{
0 if t ∈ [(2k − 2)2−n, (2k − 1)2−n[
1 if t ∈ [(2k − 1)2−n, 2k · 2−n[

(4.1)

and let us put un(1) = 1 for all n ∈ N.

It is readily verified by induction that (un) is an independent sequence of random variables
on [0, 1], each taking the values 0 and 1 with probabilities 1/2. We need the following
lemma:

Lemma 4.1 For every t ∈ [0, 1] t =
∑∞

n=1 un(t)2−n. In other words this sum is exactly
the binary expansion of t.

Proof: For t = 1 the lemma is obvious and for 0 ≤ t < 1 it will follow from the inequality

0 ≤ t−
n∑
k=1

uk(t)2
−k < 2−n for all t ∈ [0, 1[ and all n ∈ N (4.2)

which we shall prove by induction. For n = 1 (4.2) is clear so let us assume that it
holds for n and let k ∈ N be defined so that k2−n =

∑n
m=1 um(t)2−m. By the induc-

tion hypothesis k2−n ≤ t < (k + 1)2−n. If k2−n ≤ t < (2k + 1)2−n−1, then un+1(t) = 0
and the result follows. If (2k + 1)2−n−1 ≤ t < (k + 1)2−n, then un+1(t) = 1 and hence
(2k + 1)2−n−1 =

∑n+1
k=1 uk(t)2

−k and again the result follows. 2

We are now able to prove:
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Theorem 4.2 There exists an independent sequence (Un) of random variables on ([0, 1],B,m1)
so that each Un is uniformly distributed on [0, 1].

Proof:

Put U(t) = t for all t ∈ [0, 1], let (An) be a sequence of mutually disjoint infinite subsets
of N, say An = {mkn | k ∈ N} and put Un(t) =

∑∞
k=1 umkn

(t)2−k for all t ∈ [0, 1] and all
n ∈ N. Since (un) is an independent sequence and the An’s are mutually disjoint, (Un) is
independent as well. Since in addition the un’s are identically distributed, it follows from
Lemma 4.1 that each Un has the same distribution as U , i.e. is uniformly distributed on
[0, 1]. 2

We are now able to prove

Theorem 4.3 Let F be a strictly increasing and continuous distribution function. On
([0, 1],B,m) there exists a sequence (Xn) of independent, F -distributed random variables.

Proof: Let (Un) be defined as in Theorem 4.3 and define

Xn(t) = F−1(Un(t)) for all t ∈ [0, 1] and all n ∈ N (4.3)

Since F−1 is continuous, Xn is measurable for every n ∈ N and since the sequence (Un) is
independent, (Xn) is independent as well. For every x ∈ R we have:

m(Xn ≤ x) = m(Un ≤ F (x)) = F (x) (4.4)

2

As a corollary we obtain:

Corollary 4.4 On ([0, 1],B,m) there exists an independent sequence (Xn), consisting of
N(0, 1)-distributed random variables.

Proof: Use Theorem 4.3 with F (x) = 1√
2π

∫ x
−∞ e

−t2

2 dt 2

It is easily seen that the conditions on the distribution function F in Theorem 4.3 can be
omitted. Indeed, if F is an arbitrary distribution function and we define

Xn(t) = sup{s ∈ R | F (s) ≤ Un(t)} for all n ∈ N and all t ∈ [0, 1], (4.5)

then it is easy to see that (Xn) is a sequence of independent F -distributed random variables.
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