Lévy's characterization of Brownian Motion

N.J. Nielsen

1 Notation

In these notes we shall in general use standard notation. For every $n \in \mathbb{N}$ \mathcal{B}_n denotes the Borel algebra on \mathbb{R}^n and if (Ω, \mathcal{F}, P) is a probability space, $X \colon \Omega \to \mathbb{R}^n$ a random variable, then we let X(P) denote the distribution measure (the image measure) on \mathbb{R}^n of X, e.g.

$$X(P)(A) = P(X^{-1}(A)) \quad \text{for all} A \in \mathcal{B}_n.$$
(1.1)

If $n \in \mathbb{N}$, we let $\langle \cdot, \cdot \rangle$ denote the canonical inner product on \mathbb{R}^n . Hence for all $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$ og alle $y = (y_1, y_2, \ldots, y_n) \in \mathbb{R}^n$ we have

$$\langle x, y \rangle = \sum_{j=1}^{n} x_j y_j. \tag{1.2}$$

All vector spaces which occur in these notes are assumed to be real unless otherwise stated.

2 The main results

Let (Ω, \mathcal{F}, P) be a probability space and let $(\mathcal{F}_t)_{t\geq 0}$ be an increasing family of sub- σ -algebras so that \mathcal{F}_t contains all sets of measure 0 for all $t \geq 0$. We start with the following easy result.

Theorem 2.1 Let (B_t) be a one-dimensional normalized Beownian motion, adapted to (\mathcal{F}) and so that $B_t - B_s$ is independent of \mathcal{F}_s for all $0 \leq s < t$ (this ensures that (B_t) is a martingale with respect to (\mathcal{F}_t)). Then $(B_t^2 - t)$ is a martingale with respect to (\mathcal{F}_t) .

Proof: If $0 \le s < t$, then $B_t^2 = (B_t - B_s)^2 + B_s^2 + 2B_s(B_t - B_s)$ and hence

$$E(B_t^2 \mid \mathcal{F}_s) = E((B_t - B_s)^2 \mid \mathcal{F}_s) + B_s^2 + 2B_s E((B_t - B_s) \mid \mathcal{F}_s) = (t - s) + B_s^2$$

where we have used that $B_t - B_s$ and hence also $(B_t - B_s)^2$ are independent of \mathcal{F}_s . \Box

The main result of this note is to prove that the converse is also true for continuous processes, namely:

Theorem 2.2 Let (X_t) be a continuous process adapted to (\mathcal{F}_t) so that $X_0 = 0$ and

- (i) (X_t) is a martingale with respect to (\mathcal{F}_t) .
- (ii) $(X_t^2 t)$ is a martingale with respect to (\mathcal{F}_t) .
- Then (X_t) is a (normalized) Brownian motion.

Before we can prove it, we need yet another theorem which is a bit like Ito's formula and a lemma.

Theorem 2.3 Let (X_t) be as in Theorem 2.2 and let $f \in C(\mathbb{R}^2)$ so that f, f' and f'' are bounded. For all $0 \leq s < t$ we have

$$E(f(X_t) \mid \mathcal{F}_s) = X_s + \frac{1}{2} \int_s^t E(f''(X_u) \mid \mathcal{F}_s).$$
(2.3)

Proof: Let $\Pi = (t_k)_{k=0}^n$ be a partition of the interval [s, t] so that $s = t_0, t_1 < t_2 < \cdots, < t_n = t$. By Taylor's formula we get

$$f(X_t) = f(X_s) + \sum_{k=1}^{n} (f(X_{t_k}) - f(X_{t_{k-1}}))$$
(2.4)

$$= f(X_s) + \sum_{k=1}^{n} f'(X_{t_{k-1}})(X_{t_k} - X_{t_{k-1}}) + \frac{1}{2} \sum_{k=1}^{n} f''(X_{t_{k-1}})(X_{t_k} - X_{t_{k-1}})^2 + R_{\Pi}$$

Taking conditional expectations on each side we obtain:

$$E(f(X_{t}) \mid \mathcal{F}_{s}) = f(X_{s}) + \sum_{k=1}^{n} E(E(f'(X_{t_{k-1}})(X_{t_{k}} - X_{t_{k-1}}) \mid \mathcal{F}_{k-1}) \mid \mathcal{F}_{s}) + \frac{1}{2} \sum_{k=1}^{n} E(E(f''(X_{t_{k-1}})(X_{t_{k}} - X_{t_{k-1}})^{2} \mid \mathcal{F}_{t_{k-1}}) \mid \mathcal{F}_{s}) + E(R_{\Pi} \mid \mathcal{F}_{s}) = f(X_{s}) + \frac{1}{2} \sum_{k=1}^{n} E(f''(X_{t_{k-1}}) \mid \mathcal{F}_{s})(t_{k} - t_{k-1}) + E(R_{\Pi} \mid \mathcal{F}_{s}).$$
(2.5)

Using the continuity of the (X_t) it can be shown that $R_{\Pi} \to 0$ in $L_2(P)$, when the length $|\Pi|$ of Π tends to 0. Hence also $E(R_{\Pi} | \mathcal{F}_s) \to 0$ in $L_2(P)$ as $|\Pi| \to 0$. Since the function $u \to E(f''(X_u) | \mathcal{F}_s))$ is continuous a.s., we get that

$$\sum_{k=1}^{n} E(f''(X_{t_{k-1}}) \mid \mathcal{F}_s)(t_k - t_{k-1}) \to \int_s^t E(f''(X_u) \mid \mathcal{F}_s) du \quad \text{a.s.}$$
(2.6)

when $|\Pi| \to 0$ and since f'' is bounded, the bounded convergence theorem gives that the convergence in (2.6) is also in $L_2(P)$. Combining the above we get formula (2.3).

We also need

Lemma 2.4 Let $n \in \mathbb{N}$, let $Y_j : \Omega \to \mathbb{R}$, $1 \leq j \leq n$ be stochastic variables, and put $Y = (Y_1, Y_2, \dots, Y_n) : \Omega \to \mathbb{R}^n$. Further, let ϕ_{Y_j} denote the characteristic function of Y_j for $1 \leq j \leq n$ and ϕ_Y the characteristic function of Y. Then Y_1, Y_2, \dots, Y_n are independent if and only if

$$\phi_Y(x_1, x_2, \dots, x_n) = \prod_{j=1}^n \phi_{Y_j}(x_j)$$
(2.7)

for all $(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$.

Proof: It follows from the definition of independence that Y_1, Y_2, \ldots, Y_n are independent if and only if $Y(P) = \bigotimes_{j=1}^n Y_j(P)$ Noting that the right hand side of (2.7) is the characteristic function of $\bigotimes_{k=1}^n Y_j(P)$, the statement of the lemma follows from the above and the uniqueness theorem for characteristic functions [2, Theorem 2.3].

Proof of Theorem 2.2: The main part of the proof will be to prove that for all $0 \le s \le t$ we have the formula

$$E(\exp(iu(X_t - X_s)) \mid \mathcal{F}_s) = \exp(-\frac{1}{2}u^2(t - s)) \quad \text{for all } u \in \mathbb{R}.$$
 (2.8)

To prove (2.8) fix an s with $0 \le s < \infty$, a $u \in \mathbb{R}$ and apply Theorem 2.3 to the function $f(x) = \exp(iux)$ for all $x \in \mathbb{R}$. For all $s \le t$ we then obtain:

$$E(\exp(iuX_t) \mid \mathcal{F}_s) = \exp(iuX_s) - \frac{1}{2}u^2 \int_s^t E(\exp(iuX_v) \mid \mathcal{F}_s)dv$$

or

$$E(\exp(iu(X_t - X_s)) \mid \mathcal{F}_s) = 1 - \frac{1}{2}u^2 \int_s^t E(\exp(iu(X_v - X_s)) \mid \mathcal{F}_s)dv.$$
(2.9)

Since the integrand on the right side of (2.9) is continuous, the left hand side is differentiable with respect to t and

$$\frac{d}{dt}E(\exp(iu(X_t - X_s)) \mid \mathcal{F}_s) = -\frac{1}{2}u^2E(\exp(iu(X_t - X_s) \mid \mathcal{F}_s))$$

This shows that on $[s, \infty[E(\exp(iu(X_t - X_s)) | \mathcal{F}_s))$ is the solution to the differential equation

$$g'(t) = -\frac{1}{2}u^2g(t)$$

with the initial condition g(s) = 1. Hence

$$E(\exp(iu(X_t - X_s)) \mid \mathcal{F}_s) = \exp(-\frac{1}{2}u^2(t - s)) \quad \text{for all } 0 \le s \le t$$

and equation (2.8) is established.

Let now $0 \le s < t$. By (2.8) the characteristic function of $X_t - X_s$ is given by:

$$E(\exp(iu(X_t - X_s))) = E(E(\exp(iu(X_t - X_s)) \mid \mathcal{F}_s))) = \exp(-\frac{1}{2}u^2(t - s))$$

and hence by [2, Theorem 2.11] $X_t - X_s$ is normally distributed with mean 0 and variance t - s.

Let now $0 = t_0 < t_1 < t_2 < \cdots < t_n < \infty$ and put $Y = (X_{t_1}, X_{t_2} - X_{t_1}, \dots, X_{t_n} - X_{t_{n-1}})$. If ϕ_Y denotes the characteristic function of Z, then we get for all $u = (u_1, u_2, \dots, u_n) \in \mathbb{R}$:

$$\phi_Y(u) = \exp(i < u, Y >) = E(\prod_{k=1}^n \exp(iu_k(X_{t_k} - X_{t_{k-1}}))) =$$
(2.10)

$$E(E(\prod_{k=1}^{n} \exp(iu_k(X_{t_k} - X_{t_{k-1}})) \mid \mathcal{F}_s)) = \exp(-\frac{1}{2}u_n^2(t_n - t_{n-1}))E(\prod_{k=1}^{n-1} \exp(iu_k(X_{t_k} - X_{t_{k-1}})))$$

Continuing in this way we obtain:

$$\phi_Y(u) = \prod_{k=1}^n \exp(-\frac{1}{2}u_k^2(t_k - t_{k-1})) = \prod_{k=1}^n E(\exp(iu_k(X_{t_k} - X_{t_{k-1}})))$$

which together with Lemma 2.4 shows that $X_{t_1}, X_{t_2} - X_{t_1}, \ldots, X_{t_n} - X_{t_{n-1}}$ are independent. Thus we have proved that (X_t) is a normalized Brownian motion.

In many cases where Theorem 2.2 is used \mathcal{F}_t is for each t the σ -algebra generated by $\{X_s \mid 0 \leq s \leq t\}$ and the sets of measure 0. However, the theorem is often applied to cases where the \mathcal{F}_t 's are bigger.

We end this note by showing that the continuity assumption in Theorem 2.2 can not be omitted. Let us give the following definition:

Definition 2.5 An (\mathcal{F}_t) -adapted process (N_t) is called a Poisson process with intensity 1 if $N_0 = 0$ a.s. and for $0 \le s < t$, $N_t - N_s$ is independent of \mathcal{F}_s and Poisson distributed with parameter t - s.

Hence if (N_t) is a Poisson process with intensity 1, then $N_t - N_s$ takes values in $\mathbb{N} \cup \{0\}$ for all $0 \leq s < t$ and

$$P(N_t - N_s = k) = \frac{(t - s)^k}{k!} \exp(-(t - s)) \text{ for all } k \in \mathbb{N} \cup \{0\}$$

It follows e.g. from [1, Problem 3.2, page 11 ff] that such a process (N_t) exists.

Easy calculations show that $E(N_t - N_s) = t - s = V(N_t - N_s)$. The process (M_t) , where $M_t = N_t - t$ for all $t \in [0, \infty[$, is called *the compensated Poisson process* with intensity 1. Note that (M_t) is not continuous. We have:

Theorem 2.6 If (M_t) is a compensated Poisson process with intensity 1, then it satisfies the conditions (i) and (ii) in Theorem 2.2.

Proof: Let $0 \le s < t$. Since $M_t - M_s$ is independent of \mathcal{F}_s , we get

$$E(M_t \mid \mathcal{F}_s) = M_s + E(M_t - M_s) = M_s.$$

Since $M_t^2 = M_s^2 + (M_t - M - s)^2 + 2M_s(M_t - M_s)$, we also get

$$E(M_t^2 \mid \mathcal{F}_s) = M_s^2 + E((M_t - M_s) \mid \mathcal{F}_s) + 2M_s E(M_t - M_s \mid \mathcal{F}_s) = (t - s) + M_s^2.$$

References

- [1] I. Karatsas and S.E. Shreve, *Brownian Motion and Stochastic Calculus*, Second Edition, Springer Verlag.
- [2] N.J. Nielsen, *Brownian Motion*, Lecture Notes.