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1 Notation

In these notes we shall in general use standard notation. For every n ∈ N Bn denotes the
Borel algebra on Rn and if (Ω,F , P ) is a probability space, X : Ω→ Rn a random variable,
then we let X(P ) denote the distribution measure (the image measure) on Rn of X, e.g.

X(P )(A) = P (X−1(A)) for allA ∈ Bn. (1.1)

If n ∈ N, we let 〈·, ·〉 denote the canonical inner product on Rn. Hence for all x =
(x1, x2, . . . , xn) ∈ Rn og alle y = (y1, y2, . . . , yn) ∈ Rn we have

〈x, y〉 =
n∑

j=1

xjyj. (1.2)

All vector spaces which occur in these notes are assumed to be real unless otherwise stated.

2 The main results

Let (Ω,F , P ) be a probability space and let (Ft)t≥0 be an increasing family of sub-σ-
algebras so that Ft contains all sets of measure 0 for all t ≥ 0. We start with the following
easy result.

Theorem 2.1 Let (Bt) be a one–dimensional normalized Beownian motion, adapted to
(F) and so that Bt −Bs is independent of Fs for all 0 ≤ s < t (this ensures that (Bt) is a
martingale with respect to (Ft)). Then (B2

t − t) is a martingale with respect to (Ft).

Proof: If 0 ≤ s < t, then B2
t = (Bt −Bs)

2 +B2
s + 2Bs(Bt −Bs) and hence

E(B2
t | Fs) = E((Bt −Bs)

2 | Fs) +B2
s + 2BsE((Bt −Bs) | Fs) = (t− s) +B2

s

where we have used that Bt −Bs and hence also (Bt −Bs)
2 are independent of Fs. 2

The main result of this note is to prove that the converse is also true for continuous
processes, namely:

1



Theorem 2.2 Let (Xt) be a continous process adapted to (Ft) so that X0 = 0 and

(i) (Xt) is a martingale with respect to (Ft).

(ii) (X2
t − t) is a martingale with respect to (Ft).

Then (Xt) is a (normalized) Brownian motion.

Before we can prove it, we need yet another theorem which is a bit like Ito’s formula and
a lemma.

Theorem 2.3 Let (Xt) be as in Theorem 2.2 and let f ∈ C(R2) so that f , f ′ and f ′′ are
bounded. For all 0 ≤ s < t we have

E(f(Xt) | Fs) = Xs +
1

2

∫ t

s

E(f ′′(Xu) | Fs). (2.3)

Proof: Let Π = (tk)n
k=0 be a partition of the interval [s, t] so that s = t0, t1 < t2 < · · · , <

tn = t. By Taylor’s formula we get

f(Xt) = f(Xs) +
n∑

k=1

(f(Xtk)− f(Xtk−1
)) (2.4)

= f(Xs) +
n∑

k=1

f ′(Xtk−1
)(Xtk −Xtk−1

) +
1

2

n∑
k=1

f ′′(Xtk−1
)(Xtk −Xtk−1

)2 +RΠ

Taking conditional expectations on each side we obtain:

E(f(Xt) | Fs) = f(Xs) +
n∑

k=1

E(E(f ′(Xtk−1
)(Xtk −Xtk−1

) | Fk−1) | Fs) +

1

2

n∑
k=1

E(E(f ′′(Xtk−1
)(Xtk −Xtk−1

)2 | Ftk−1
) | Fs) + E(RΠ | Fs) = f(Xs) +

1

2

n∑
k=1

E(f ′′(Xtk−1
) | Fs)(tk − tk−1) + E(RΠ | Fs). (2.5)

Using the continuity of the (Xt) it can be shown that RΠ → 0 in L2(P ), when the length
|Π| of Π tends to 0. Hence also E(RΠ | Fs) → 0 in L2(P )as |Π| → 0. Since the function
u→ E(f ′′(Xu) | Fs)) is continuous a.s., we get that

n∑
k=1

E(f ′′(Xtk−1
) | Fs)(tk − tk−1)→

∫ t

s

E(f ′′(Xu) | Fs)du a.s. (2.6)

when |Π| → 0 and since f ′′ is bounded, the bounded convergence theorem gives that the
convergence in (2.6) is also in L2(P ). Combining the above we get formula (2.3). 2

We also need
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Lemma 2.4 Let n ∈ N, let Yj : Ω → R, 1 ≤ j ≤ n be stochastic variables, and put
Y = (Y1, Y2, · · · , Yn) : Ω → Rn. Further, let φYj

denote the characteristic function of Yj

for 1 ≤ j ≤ n and φY the characteristic function of Y . Then Y1, Y2, . . . , Yn are independent
if and only if

φY (x1, x2, . . . , xn) =
n∏

j=1

φYj
(xj) (2.7)

for all (x1, x2, . . . , xn) ∈ Rn.

Proof: It follows from the definition of independence that Y1, Y2, . . . , Yn are independent
if and only if Y (P ) = ⊗n

j=1Yj(P ) Noting that the right hand side of (2.7) is the character-
istic function of ⊗n

k=1Yj(P ), the statement of the lemma follows from the above and the
uniqueness theorem for characteristic functions [2, Theorem 2.3]. 2

Proof of Theorem 2.2: The main part of the proof will be to prove that for all 0 ≤ s ≤ t
we have the formula

E(exp(iu(Xt −Xs)) | Fs) = exp(−1

2
u2(t− s)) for all u ∈ R. (2.8)

To prove (2.8) fix an s with 0 ≤ s < ∞, a u ∈ R and apply Theorem 2.3 to the function
f(x) = exp(iux) for all x ∈ R. For all s ≤ t we then obtain:

E(exp(iuXt) | Fs) = exp(iuXs)−
1

2
u2

∫ t

s

E(exp(iuXv) | Fs)dv

or

E(exp(iu(Xt −Xs)) | Fs) = 1− 1

2
u2

∫ t

s

E(exp(iu(Xv −Xs)) | Fs)dv. (2.9)

Since the integrand on the right side of (2.9) is continuous, the left hand side is differentiable
with respect to t and

d

dt
E(exp(iu(Xt −Xs)) | Fs) = −1

2
u2E(exp(iu(Xt −Xs) | Fs).

This shows that on [s,∞[ E(exp(iu(Xt − Xs)) | Fs) is the solution to the differential
equation

g′(t) = −1

2
u2g(t)

with the initial condition g(s) = 1. Hence

E(exp(iu(Xt −Xs)) | Fs) = exp(−1

2
u2(t− s)) for all 0 ≤ s ≤ t

and equation (2.8) is established.
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Let now 0 ≤ s < t. By (2.8) the characteristic function of Xt −Xs is given by:

E(exp(iu(Xt −Xs)) = E(E(exp(iu(Xt −Xs)) | Fs)) = exp(−1

2
u2(t− s))

and hence by [2, Theorem 2.11] Xt−Xs is normally distributed with mean 0 and variance
t− s.

Let now 0 = t0 < t1 < t2 < · · · < tn < ∞ and put Y = (Xt1 , Xt2 −Xt1 , . . . , Xtn −Xtn−1).
If φY denotes the characteristic function of Z, then we get for all u = (u1, u2, . . . , un) ∈ R:

φY (u) = exp(i < u, Y >) = E(
n∏

k=1

exp(iuk(Xtk −Xtk−1
)) = (2.10)

E(E(
n∏

k=1

exp(iuk(Xtk −Xtk−1)) | Fs) = exp(−1

2
u2

n(tn − tn−1))E(
n−1∏
k=1

exp(iuk(Xtk −Xtk−1
))

Continuing in this way we obtain:

φY (u) =
n∏

k=1

exp(−1

2
u2

k(tk − tk−1) =
n∏

k=1

E(exp(iuk(Xtk −Xtk−1
))

which together with Lemma 2.4 shows that Xt1 , Xt2−Xt1 , . . . , Xtn−Xtn−1 are independent.

Thus we have proved that (Xt) is a normalized Brownian motion. 2

In many cases where Theorem 2.2 is used Ft is for each t the σ–algebra generated by
{Xs | 0 ≤ s ≤ t} and the sets of measure 0. However, the theorem is often applied to cases
where the Ft’s are bigger.

We end this note by showing that the continuity assumption in Theorem 2.2 can not be
omitted. Let us give the following definition:

Definition 2.5 An (Ft)–adapted process (Nt)is called a Poisson process with intensity 1
if N0 = 0 a.s. and for 0 ≤ s < t, Nt − Ns is independent of Fs and Poisson distributed
with parameter t− s.

Hence if (Nt) is a Poisson process with intensity 1, then Nt − Ns takes values in N ∪ {0}
for all 0 ≤ s < t and

P (Nt −Ns = k) =
(t− s)k

k!
exp(−(t− s)) for all k ∈ N ∪ {0}

It follows e.g. from [1, Problem 3.2, page 11 ff] that such a process (Nt) exists.

Easy calculations show that E(Nt −Ns) = t− s = V (Nt −Ns). The process (Mt), where
Mt = Nt − t for all t ∈ [0,∞[, is called the compensated Poisson process with intensity 1.
Note that (Mt) is not continuous. We have:
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Theorem 2.6 If (Mt) is a compensated Poisson process with intensity 1, then it satisfies
the conditions (i) and (ii) in Theorem 2.2.

Proof: Let 0 ≤ s < t. Since Mt −Ms is independent of Fs, we get

E(Mt | Fs) = Ms + E(Mt −Ms) = Ms.

Since M2
t = M2

s + (Mt −M − s)2 + 2Ms(Mt −Ms), we also get

E(M2
t | Fs) = M2

s + E((Mt −Ms) | Fs) + 2MsE(Mt −Ms | Fs) = (t− s) +M2
s .
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