Lévy's characterization of Brownian Motion

N.J. Nielsen

1 Notation

In these notes we shall in general use standard notation. For every $n \in \mathbb{N} \mathcal{B}_{n}$ denotes the Borel algebra on \mathbb{R}^{n} and if (Ω, \mathcal{F}, P) is a probability space, $X: \Omega \rightarrow \mathbb{R}^{n}$ a random variable, then we let $X(P)$ denote the distribution measure (the image measure) on \mathbb{R}^{n} of X, e.g.

$$
\begin{equation*}
X(P)(A)=P\left(X^{-1}(A)\right) \quad \text { for all } A \in \mathcal{B}_{n} \tag{1.1}
\end{equation*}
$$

If $n \in \mathbb{N}$, we let $\langle\cdot, \cdot\rangle$ denote the canonical inner product on \mathbb{R}^{n}. Hence for all $x=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ og alle $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ we have

$$
\begin{equation*}
\langle x, y\rangle=\sum_{j=1}^{n} x_{j} y_{j} . \tag{1.2}
\end{equation*}
$$

All vector spaces which occur in these notes are assumed to be real unless otherwise stated.

2 The main results

Let (Ω, \mathcal{F}, P) be a probability space and let $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ be an increasing family of sub- σ algebras so that \mathcal{F}_{t} contains all sets of measure 0 for all $t \geq 0$. We start with the following easy result.
Theorem 2.1 Let $\left(B_{t}\right)$ be a one-dimensional normalized Beownian motion, adapted to (\mathcal{F}) and so that $B_{t}-B_{s}$ is independent of \mathcal{F}_{s} for all $0 \leq s<t$ (this ensures that $\left(B_{t}\right)$ is a martingale with respect to $\left(\mathcal{F}_{t}\right)$). Then $\left(B_{t}^{2}-t\right)$ is a martingale with respect to $\left(\mathcal{F}_{t}\right)$.
Proof: If $0 \leq s<t$, then $B_{t}^{2}=\left(B_{t}-B_{s}\right)^{2}+B_{s}^{2}+2 B_{s}\left(B_{t}-B_{s}\right)$ and hence

$$
E\left(B_{t}^{2} \mid \mathcal{F}_{s}\right)=E\left(\left(B_{t}-B_{s}\right)^{2} \mid \mathcal{F}_{s}\right)+B_{s}^{2}+2 B_{s} E\left(\left(B_{t}-B_{s}\right) \mid \mathcal{F}_{s}\right)=(t-s)+B_{s}^{2}
$$

where we have used that $B_{t}-B_{s}$ and hence also $\left(B_{t}-B_{s}\right)^{2}$ are independent of \mathcal{F}_{s}.

The main result of this note is to prove that the converse is also true for continuous processes, namely:

Theorem 2.2 Let $\left(X_{t}\right)$ be a continous process adapted to $\left(\mathcal{F}_{t}\right)$ so that $X_{0}=0$ and
(i) $\left(X_{t}\right)$ is a martingale with respect to $\left(\mathcal{F}_{t}\right)$.
(ii) $\left(X_{t}^{2}-t\right)$ is a martingale with respect to $\left(\mathcal{F}_{t}\right)$.

Then $\left(X_{t}\right)$ is a (normalized) Brownian motion.
Before we can prove it, we need yet another theorem which is a bit like Ito's formula and a lemma.

Theorem 2.3 Let $\left(X_{t}\right)$ be as in Theorem 2.2 and let $f \in C\left(\mathbb{R}^{2}\right)$ so that f, f^{\prime} and $f^{\prime \prime}$ are bounded. For all $0 \leq s<t$ we have

$$
\begin{equation*}
E\left(f\left(X_{t}\right) \mid \mathcal{F}_{s}\right)=X_{s}+\frac{1}{2} \int_{s}^{t} E\left(f^{\prime \prime}\left(X_{u}\right) \mid \mathcal{F}_{s}\right) \tag{2.3}
\end{equation*}
$$

Proof: Let $\Pi=\left(t_{k}\right)_{k=0}^{n}$ be a partition of the interval $[s, t]$ so that $s=t_{0}, t_{1}<t_{2}<\cdots,<$ $t_{n}=t$. By Taylor's formula we get

$$
\begin{align*}
f\left(X_{t}\right) & =f\left(X_{s}\right)+\sum_{k=1}^{n}\left(f\left(X_{t_{k}}\right)-f\left(X_{t_{k-1}}\right)\right) \tag{2.4}\\
& =f\left(X_{s}\right)+\sum_{k=1}^{n} f^{\prime}\left(X_{t_{k-1}}\right)\left(X_{t_{k}}-X_{t_{k-1}}\right)+\frac{1}{2} \sum_{k=1}^{n} f^{\prime \prime}\left(X_{t_{k-1}}\right)\left(X_{t_{k}}-X_{t_{k-1}}\right)^{2}+R_{\Pi}
\end{align*}
$$

Taking conditional expectations on each side we obtain:

$$
\begin{gather*}
E\left(f\left(X_{t}\right) \mid \mathcal{F}_{s}\right)=f\left(X_{s}\right)+\sum_{k=1}^{n} E\left(E\left(f^{\prime}\left(X_{t_{k-1}}\right)\left(X_{t_{k}}-X_{t_{k-1}}\right) \mid \mathcal{F}_{k-1}\right) \mid \mathcal{F}_{s}\right)+ \\
\frac{1}{2} \sum_{k=1}^{n} E\left(E\left(f^{\prime \prime}\left(X_{t_{k-1}}\right)\left(X_{t_{k}}-X_{t_{k-1}}\right)^{2} \mid \mathcal{F}_{t_{k-1}}\right) \mid \mathcal{F}_{s}\right)+E\left(R_{\Pi} \mid \mathcal{F}_{s}\right)=f\left(X_{s}\right)+ \\
\frac{1}{2} \sum_{k=1}^{n} E\left(f^{\prime \prime}\left(X_{t_{k-1}}\right) \mid \mathcal{F}_{s}\right)\left(t_{k}-t_{k-1}\right)+E\left(R_{\Pi} \mid \mathcal{F}_{s}\right) \tag{2.5}
\end{gather*}
$$

Using the continuity of the $\left(X_{t}\right)$ it can be shown that $R_{\Pi} \rightarrow 0$ in $L_{2}(P)$, when the length $|\Pi|$ of Π tends to 0 . Hence also $E\left(R_{\Pi} \mid \mathcal{F}_{s}\right) \rightarrow 0$ in $L_{2}(P)$ as $|\Pi| \rightarrow 0$. Since the function $\left.u \rightarrow E\left(f^{\prime \prime}\left(X_{u}\right) \mid \mathcal{F}_{s}\right)\right)$ is continuous a.s., we get that

$$
\begin{equation*}
\sum_{k=1}^{n} E\left(f^{\prime \prime}\left(X_{t_{k-1}}\right) \mid \mathcal{F}_{s}\right)\left(t_{k}-t_{k-1}\right) \rightarrow \int_{s}^{t} E\left(f^{\prime \prime}\left(X_{u}\right) \mid \mathcal{F}_{s}\right) d u \quad \text { a.s. } \tag{2.6}
\end{equation*}
$$

when $|\Pi| \rightarrow 0$ and since $f^{\prime \prime}$ is bounded, the bounded convergence theorem gives that the convergence in (2.6) is also in $L_{2}(P)$. Combining the above we get formula (2.3).

We also need

Lemma 2.4 Let $n \in \mathbb{N}$, let $Y_{j}: \Omega \rightarrow \mathbb{R}, 1 \leq j \leq n$ be stochastic variables, and put $Y=\left(Y_{1}, Y_{2}, \cdots, Y_{n}\right): \Omega \rightarrow \mathbb{R}^{n}$. Further, let $\phi_{Y_{j}}$ denote the characteristic function of Y_{j} for $1 \leq j \leq n$ and ϕ_{Y} the characteristic function of Y. Then $Y_{1}, Y_{2}, \ldots, Y_{n}$ are independent if and only if

$$
\begin{equation*}
\phi_{Y}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{j=1}^{n} \phi_{Y_{j}}\left(x_{j}\right) \tag{2.7}
\end{equation*}
$$

for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
Proof: It follows from the definition of independence that $Y_{1}, Y_{2}, \ldots, Y_{n}$ are independent if and only if $Y(P)=\otimes_{j=1}^{n} Y_{j}(P)$ Noting that the right hand side of (2.7) is the characteristic function of $\otimes_{k=1}^{n} Y_{j}(P)$, the statement of the lemma follows from the above and the uniqueness theorem for characteristic functions [2, Theorem 2.3].

Proof of Theorem 2.2: The main part of the proof will be to prove that for all $0 \leq s \leq t$ we have the formula

$$
\begin{equation*}
E\left(\exp \left(i u\left(X_{t}-X_{s}\right)\right) \mid \mathcal{F}_{s}\right)=\exp \left(-\frac{1}{2} u^{2}(t-s)\right) \quad \text { for all } u \in \mathbb{R} \tag{2.8}
\end{equation*}
$$

To prove (2.8) fix an s with $0 \leq s<\infty$, a $u \in \mathbb{R}$ and apply Theorem 2.3 to the function $f(x)=\exp ($ iux $)$ for all $x \in \mathbb{R}$. For all $s \leq t$ we then obtain:

$$
E\left(\exp \left(i u X_{t}\right) \mid \mathcal{F}_{s}\right)=\exp \left(i u X_{s}\right)-\frac{1}{2} u^{2} \int_{s}^{t} E\left(\exp \left(i u X_{v}\right) \mid \mathcal{F}_{s}\right) d v
$$

or

$$
\begin{equation*}
E\left(\exp \left(i u\left(X_{t}-X_{s}\right)\right) \mid \mathcal{F}_{s}\right)=1-\frac{1}{2} u^{2} \int_{s}^{t} E\left(\exp \left(i u\left(X_{v}-X_{s}\right)\right) \mid \mathcal{F}_{s}\right) d v \tag{2.9}
\end{equation*}
$$

Since the integrand on the right side of (2.9) is continuous, the left hand side is differentiable with respect to t and

$$
\frac{d}{d t} E\left(\exp \left(i u\left(X_{t}-X_{s}\right)\right) \mid \mathcal{F}_{s}\right)=-\frac{1}{2} u^{2} E\left(\exp \left(i u\left(X_{t}-X_{s}\right) \mid \mathcal{F}_{s}\right)\right.
$$

This shows that on $\left[s, \infty\left[E\left(\exp \left(i u\left(X_{t}-X_{s}\right)\right) \mid \mathcal{F}_{s}\right)\right.\right.$ is the solution to the differential equation

$$
g^{\prime}(t)=-\frac{1}{2} u^{2} g(t)
$$

with the initial condition $g(s)=1$. Hence

$$
E\left(\exp \left(i u\left(X_{t}-X_{s}\right)\right) \mid \mathcal{F}_{s}\right)=\exp \left(-\frac{1}{2} u^{2}(t-s)\right) \quad \text { for all } 0 \leq s \leq t
$$

and equation (2.8) is established.

Let now $0 \leq s<t$. By (2.8) the characteristic function of $X_{t}-X_{s}$ is given by:

$$
E\left(\exp \left(i u\left(X_{t}-X_{s}\right)\right)=E\left(E\left(\exp \left(i u\left(X_{t}-X_{s}\right)\right) \mid \mathcal{F}_{s}\right)\right)=\exp \left(-\frac{1}{2} u^{2}(t-s)\right)\right.
$$

and hence by [2, Theorem 2.11] $X_{t}-X_{s}$ is normally distributed with mean 0 and variance $t-s$.

Let now $0=t_{0}<t_{1}<t_{2}<\cdots<t_{n}<\infty$ and put $Y=\left(X_{t_{1}}, X_{t_{2}}-X_{t_{1}}, \ldots, X_{t_{n}}-X_{t_{n-1}}\right)$. If ϕ_{Y} denotes the characteristic function of Z, then we get for all $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in \mathbb{R}$:

$$
\begin{align*}
\phi_{Y}(u)=\exp (i<u, Y>) & =E\left(\prod_{k=1}^{n} \exp \left(i u_{k}\left(X_{t_{k}}-X_{t_{k-1}}\right)\right)=\right. \tag{2.10}\\
E\left(E\left(\prod_{k=1}^{n} \exp \left(i u_{k}\left(X_{t_{k}}-X_{t k-1}\right)\right) \mid \mathcal{F}_{s}\right)\right. & =\exp \left(-\frac{1}{2} u_{n}^{2}\left(t_{n}-t_{n-1}\right)\right) E\left(\prod_{k=1}^{n-1} \exp \left(i u_{k}\left(X_{t_{k}}-X_{t_{k-1}}\right)\right)\right.
\end{align*}
$$

Continuing in this way we obtain:

$$
\phi_{Y}(u)=\prod_{k=1}^{n} \exp \left(-\frac{1}{2} u_{k}^{2}\left(t_{k}-t_{k-1}\right)=\prod_{k=1}^{n} E\left(\exp \left(i u_{k}\left(X_{t_{k}}-X_{t_{k-1}}\right)\right)\right.\right.
$$

which together with Lemma 2.4 shows that $X_{t_{1}}, X_{t_{2}}-X_{t_{1}}, \ldots, X_{t_{n}}-X_{t_{n-1}}$ are independent. Thus we have proved that $\left(X_{t}\right)$ is a normalized Brownian motion.

In many cases where Theorem 2.2 is used \mathcal{F}_{t} is for each t the σ-algebra generated by $\left\{X_{s} \mid 0 \leq s \leq t\right\}$ and the sets of measure 0 . However, the theorem is often applied to cases where the \mathcal{F}_{t} 's are bigger.
We end this note by showing that the continuity assumption in Theorem 2.2 can not be omitted. Let us give the following definition:
Definition 2.5 An $\left(\mathcal{F}_{t}\right)$-adapted process $\left(N_{t}\right)$ is called a Poisson process with intensity 1 if $N_{0}=0$ a.s. and for $0 \leq s<t, N_{t}-N_{s}$ is independent of \mathcal{F}_{s} and Poisson distributed with parameter $t-s$.

Hence if $\left(N_{t}\right)$ is a Poisson process with intensity 1 , then $N_{t}-N_{s}$ takes values in $\mathbb{N} \cup\{0\}$ for all $0 \leq s<t$ and

$$
P\left(N_{t}-N_{s}=k\right)=\frac{(t-s)^{k}}{k!} \exp (-(t-s)) \quad \text { for all } k \in \mathbb{N} \cup\{0\}
$$

It follows e.g. from [1, Problem 3.2, page 11 ff$]$ that such a process $\left(N_{t}\right)$ exists.
Easy calculations show that $E\left(N_{t}-N_{s}\right)=t-s=V\left(N_{t}-N_{s}\right)$. The process $\left(M_{t}\right)$, where $M_{t}=N_{t}-t$ for all $t \in[0, \infty[$, is called the compensated Poisson process with intensity 1. Note that $\left(M_{t}\right)$ is not continuous. We have:

Theorem 2.6 If $\left(M_{t}\right)$ is a compensated Poisson process with intensity 1, then it satisfies the conditions (i) and (ii) in Theorem 2.2.

Proof: Let $0 \leq s<t$. Since $M_{t}-M_{s}$ is independent of \mathcal{F}_{s}, we get

$$
E\left(M_{t} \mid \mathcal{F}_{s}\right)=M_{s}+E\left(M_{t}-M_{s}\right)=M_{s} .
$$

Since $M_{t}^{2}=M_{s}^{2}+\left(M_{t}-M-s\right)^{2}+2 M_{s}\left(M_{t}-M_{s}\right)$, we also get

$$
E\left(M_{t}^{2} \mid \mathcal{F}_{s}\right)=M_{s}^{2}+E\left(\left(M_{t}-M_{s}\right) \mid \mathcal{F}_{s}\right)+2 M_{s} E\left(M_{t}-M_{s} \mid \mathcal{F}_{s}\right)=(t-s)+M_{s}^{2} .
$$

References

[1] I. Karatsas and S.E. Shreve, Brownian Motion and Stochastic Calculus, Second Edition, Springer Verlag.
[2] N.J. Nielsen, Brownian Motion, Lecture Notes.

