Continuous functions on \mathbb{R}

N.J. Nielsen

November 5, 2008

We tacitly assume that the reader is familar with the continuity properties of the classical functions defined on the \mathbb{R} or intervals of \mathbb{R}. However, let us recall that if $U \subseteq \mathbb{R}$ and $f: U \rightarrow \mathbb{R}$ is a function, then f is said to be continuous in a point $x_{0} \in U$, if

$$
\begin{equation*}
\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \in U:\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon \tag{1.1}
\end{equation*}
$$

Intuitively speaking, this means that when x gets close to x_{0}, then $f(x)$ gets close to $f\left(x_{0}\right) . f$ is said to be continuous if it is continuous in all points of U. If we write this with quantifiers, we get:

$$
\begin{equation*}
\forall \varepsilon>0 \quad \forall x \in U \quad \exists \delta>0 \quad \forall y \in U:|x-y|<\delta \Rightarrow|f(x)-f(y)|<\varepsilon \tag{1.2}
\end{equation*}
$$

It is always a bit dangerous to interchange quantifiers in a logical statement because the statement changes radically. Let us anyway look on the following statement:

$$
\begin{equation*}
\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \in U \quad \forall y \in U:|x-y|<\delta \Rightarrow|f(x)-f(y)|<\varepsilon \tag{1.3}
\end{equation*}
$$

If we do a little text analysis of the two statements we see that in (1.2) the δ depends on ε and x while in (1.3) the δ only depends on ε and thus works for all $x, y \in X$. The statement (1.3) makes perfectly sence and gives rise to the following definition:

Definition 1.1 Let $U \subseteq \mathbb{R}$. A function $f: U \rightarrow \mathbb{R}$ is called uniformly continuous if it satisfies (1.3)

The word "uniformly" is used because given $\varepsilon>0$, one can use the same δ for all $x, y \in X$. The next statement is really an example, but we formulate it as a proposition.

Proposition 1.2 Let $f:[1, \infty[\rightarrow \mathbb{R}$ be defined by $f(x)=\sqrt{x}$ for all $1 \leq x<\infty$. Then f is uniformly continuous.

Proof: Let $x, y \geq 1$ be arbitrary. Since f is differentiable, we can by the mean value theorem find a ξ between x and y so that

$$
f(x)-f(y)=f^{\prime}(\xi)(x-y)
$$

Since $\xi \geq 1$ and $f^{\prime}(\xi)=\frac{1}{2 \sqrt{\xi}}$, we get that $\left|f^{\prime}(\xi)\right| \leq \frac{1}{2}$ and hence

$$
|f(x)-f(y)| \leq \frac{1}{2}|x-y|
$$

which holds for all $x, y \geq 1$. If now $\varepsilon>0$ is arbitrary, we can choose a $0<\delta<2 \varepsilon$ and if $|x-y|<\delta$, then by the above:

$$
|f(x)-f(y)| \leq \varepsilon
$$

This shows that f is uniformly continuous.

We shall later prove that any continuous function defined on a closed and bounded interval of \mathbb{R} is uniformly continuous. Combining this with Proposition 1.2 we get that the square root function is in fact uniformly continuous on $[0, \infty[$. The next example shows that even very nice continuous functions need not be uniformly continuous.

Example 1.3 let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defind by $g(x)=x^{2}$ for all $x \in \mathbb{R}$. We claim that g is not uniformly continuous. It is clearly enough to prove that g is not uniformly continuous on $[0, \infty]$. To see this we put $\varepsilon=1$ and let $0<\delta \leq 1$ be arbitrary. If $x \geq 0$, we get

$$
0 \leq g(x+\delta)-g(x)=(x+\delta)^{2}-x^{2}=(2 x+\delta) \delta
$$

For all $x>\frac{1}{2}\left(\delta^{-1}-\delta\right)$ we get that

$$
g(x+\delta)-g(x)>1
$$

which shows that g is not uniformly continuous.

