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Preliminaries

This note contains solutions to all exercises from the Exercise Book dealing with
countability (Exercise Book: Problems 9 to 12). You are welcome to report any
error.

Before beginning solving the exercises, two introductory remarks are nec-
essary. Firstly, in Problem 9 we will use the fact that any subset of a finite
set is finite. You will probably be surprised that proving this apparently quite
intuitive result requires some amount of work. According to agreement with
Niels Jørgen, we do not need to go through this formal proof. If you are in-
terested, however, you find a sketch of the proof in the appendix to this note.
Secondly, Definition 0.8 of the lecture notes requires the existence of a bijection
f : N → A for a set A to be countable. In some cases, however, you may end
up with showing the existence of a bijection g : A → N. Since g is a bijection,
the inverse g−1 : N→ A exists, and this inverse g−1 is a bijection of N with A,
showing that A is countable. You find a proof of this result in the appendix to
this note. Similarly, you may end up with showing the existence of a bijection
h : A → B where A is countable. Hence, there exists a bijection g : N → A.
The composition h ◦ g : N→ B such that h ◦ g(n) = h(g(n)) for n ∈ N is then a
bijection of N with B, showing that B is countable. The straightforward proof
of this result is left as a voluntary exercise. Now we are ready to have a look
on the first of the exercises about countability.

Exercise Book Problem 9

1.

Let A be an infinite subset of N and assume for the moment

An = {m ∈ A : m > n} = ∅.

for some n ∈ N. Then m ≤ n for all m ∈ A implying that A is a subset of the
finite set {1, ..., n}. By the first introductory remark, A was finite contradicting
the assumption that A is infinite. Hence An �= ∅ for all n ∈ N.
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2.

Let f : N → A be defined as in the exercise. If k ∈ N then f(k) is the first
element of Af(k−1) = {m ∈ A : m > f(k − 1)} implying that f(k) > f(k − 1).
Repeating this argument shows that f(k) > f(k−1) > ... > f(1). Assume then
m > n. It follows that f(m) > f(n) showing that f is one-to-one. To show
that f is onto, let a be an arbitrary element of A. The image set f(N) cannot
be included in the set {1, ..., a} since we just have shown that f is one-to-one
implying that f(N) is infinite. There exists thus an n ∈ N such that f(n) > a.
Letm be the smallest element of N such that f(m) ≥ a. It follows that f(k) < a
for all k < m and a ∈ A \ f ({1, ...,m− 1}). On the contrary, f(m) is defined
to be the first element of Af(m−1) implying that f(m) is the smallest element
of the set A \ f ({1, ...,m− 1}) which in turn implies that f(m) ≤ a. Putting
both inequalities together results in f(m) = a. Hence, f : N→ A is a bijection
of N with A and by Definition 0.8 follows that A is countable.

3.

If B is a nonempty subset of N, then B is either finite or infinite. If it is infinite,
the previous result shows that B is countable. Thus B is at most countable.

4.

Let X be an arbitrary countable set and let Y be an nonempty subset of X. By
Definition 0.8, there is an injection g of X into N and the restriction of g |Y on
Y is an injection of Y into N. If one changes the range of g |Y , one can obtain
a bijection of Y with a subset of N. The previous result shows then that Y is
at most countable.

Exercise Book Problem 10

Consider following function g : Z→ N such that

g : k ∈ Z →

{
2k if k > 0

2 |k|+ 1 if k ≤ 0

Let n be an arbitrary element of N. If n is even, then there exists k ∈ Z

where k = n
2 such that g(k) = n. If n is odd, then there exixts l ∈ Z where

l = −n−1
2 such that g(l) = n. This shows that g is onto. To show that g is

one-to-one, assume that g(k) = g(l) where k, l ∈ Z. Then either 2k = 2l or
2 |k| + 1 = 2 |l| + 1. In either case, k = l. Hence, g is a bijection of Z with N
showing that Z is countable.

Exercise Book Problem 11

Let N × N = {(m,n) : m ∈ N, n ∈ N} and let f : N × N → N be defined such
that
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f((m,n)) = 2m3n.

1.

Assume f((m,n)) = f((l, k)) where (m,n), (l, k) ∈ N×N. If m < l then

3n = 2l−m3k

contradicting the fact that 3n is an odd number for all n = 1, 2, 3, .... Hence
m = l and 3n = 3k. If n < k then 1 = 3k−n leading again to a contradiction.
Hence n = k and (m,n) = (k, l). This shows that f is an injection of N×N into
N.

2.

If one changes the range of f , one can obtain a bijection of N×N with a subset
of N. Call this subset of N for B. By part 3 of Problem 9 follows that N×N is
at most countable. The set B, however, must necessarily be infinite since f is
an injection showing that N×N is countable.

3.

Let A and B be two arbitrary countable sets and consider the set A × B =
{(a, b) : a ∈ A, b ∈ B}. There exist two bijections f : A → N and g : B → N.
Define the function h : A×B → N×N such that h((a, b)) = (f(a), g(b)). Assume
h((a, b)) = h((c, d)) where (a, b) and (c, d) are arbitrary elements of A×B. Then
(f(a), g(b)) = (f(c), g(d)) implying that f(a) = f(c) and g(b) = g(d). Since both
f and g are one-to-one, it follows that a = c and b = d and thus (a, b) = (c, d).
This shows that h is one-to-one. To show that h is onto assume (n,m) ∈ N×N.
Since f is onto, there exists an a ∈ A such that f(a) = n. Similarly, there exists
b ∈ B such that g(b) = m. Hence, there exists an (a, b) ∈ A × B such that
h((a, b)) = (n,m) showing that h is a bijection of A × B with N × N. Since
N×N is countable, A×B is countable.

Exercise Book Problem 12

1.

Let Q be the set of rational numbers. Let A be the set defined as

A = {(m,n) ∈ Z×N : gcd(m,n) = 1}.

Since both Z and N are countable sets, the product Z×N is countable by part
3 of problem 11. Let m = 21 and n = 10. Then gcd(21, 10) = 1 showing that A
is a nonempty subset of Z×N. By part 4 of problem 9, A is at most countable.
One can of course find infinitely many integers m ∈ Z such that gcd(m, 1) = 1
showing that A is countable.
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2.

For the second part, you need one addtional result which is just presented
without proof.

Lemma 1 If a divides bc and gcd(a, b) = 1, then a divides c.

Define f : A→ Q such that

f((m,n)) =
m

n

for all (m,n) ∈ A. Given r ∈ Q (r �= 0), it can be represented as a fraction
p
q
for some p, q ∈ Z. Without loss of generality, we may assume q > 0. If

q < 0, we can use the representation −p
−q

. Let d = gcd(p, q). By definition, we

can write p = md and q = nd for some m,n ∈ Z with gcd(m,n) = 1 where
n > 0 since q > 0. Hence, r = p

q
= md

nd
= m

n
and (m,n) ∈ A. This shows

that f is onto. To show that f is one-to-one, assume f((m1, n1)) = f((m2, n2))
where (mi, ni) ∈ A and where gcd(mi, ni) = 1 for i = 1, 2. Then

m1

n1
= m2

n2
and

both fractions represent the same rational number. Cross-multiplying results
in m1n2 = n1m2 showing that n2 divides n1m2 as well as n1 divides m1n2.
Since gcd(mi, ni) = 1 for i = 1, 2 it follows by Lemma 7 that n2 divides n1 and
n1 divides n2. Since both n1 and n2 are positive, it follows that n2 ≤ n1 and
n1 ≤ n2. Putting both inequalities together results in n1 = n2. Using this last
result in m1n2 = n1m2 ⇒ (m1 −m2)n2 = 0 implies that m1 = m2 and thus
(m1, n1) = (m2, n2) which shows that f is one-to-one. Hence, there exists a
bijection f of A with Q. Since A is countable, Q is countable.

As a byproduct, this exercise shows that every rational number r ∈ Q has
a unique representation in lowest terms. Surjectivity of f proves the existence,
while injectivity of f proves uniqueness.

Appendix

Let us first define the concept of a finite set.

Definition 2 A set A is said to be finite if it is empty or if there exists a

bijection

f : A→ {1, ..., n}

for some positive integer n.

The next step involves showing that any subset B of a finite set A is finite.
Before doing so, we need a lemma and a theorem and the desired result follows
then as a corollary.

Lemma 3 Let n be a positive integer. If a is an element of the set A, then

there exists a bijection f of the set A with the set {1, ..., n + 1} if and only if
there exists a bijection g of the set A \ a with the set {1, ..., n}.

4



MM508 Topology I

Instead of proving this lemma, I would rather explain the meaning of it. It
basically states that if you have a set A, and the set, resulting by removing one
element from A, is finite, then A is also finite. Conversely, if you have a set B,
and the set, resulting by adding one element to B, is finite, then B is also finite.

Theorem 4 Let A be a set and suppose there exists a bijection f : A →
{1, ..., n} for some positive integer n. If B is a nonempty proper subset of A,

then there exists a bijection g : B → {1, ...,m} for some m < n.

Proof. The theorem is obviously true for n = 1 since then there does not exist
any nonempty proper subset B of A. Assume then the theorem is true for n. We
have to show that the theorem is true for n+ 1. Suppose f : A→ {1, ..., n+1}
is a bijection and B is a proper subset of A. Let b ∈ B. Lemma 3 shows there
exists a bijection g : A \ b → {1, ..., n}. Since B \ b is a proper subset of A \ b
and since the theorem is true for n, two cases may occur. Either B \ b = ∅ or
there exists a bijection h : B \ b → {1, ..., t} for some t < n. If B \ b = ∅ then
there exists obviously a bijection from B with {1}. If B \b �= ∅ then there exists
a bijection from B with {1, ..., t+1} by Lemma 3. In both cases, there exists a
bijection from B with {1, ...,m} for some m < n+ 1, as required.

Corollary 5 Any subset B of a finite set A is finite.

Proof. Use Theorem 4 for all proper subsets B of A and use additionally
Lemma 3 to cover the case where B = A.

Lemma 6 Let f : X → Y be a bijection of X with Y . Then the inverse function

f−1 : Y → X is a bijection, too.

Proof. Since f−1 is the inverse function to f it follows that for all y ∈ Y ,
f−1(y) = x implies x ∈ X and f(x) = y. Assume then f−1(y) = f−1(y′) for
some y, y′ ∈ Y . If f−1(y) = x and f−1(y′) = x′, it follows that x = x′ and
f(x) = y = y′ = f(x′) showing that f−1 is one-to-one. In order to show that
f−1 is onto, consider an arbitrary x ∈ X. Then f(x) = y for some y ∈ Y . Since
f−1 is the inverse function to f , f−1(y) = x, showing that f−1 is onto.

Lemma 7 Let f : X → Y be a bijection of X with Y and let g : Y → Z

be a bijection of Y with Z. Then the composition g ◦ f : X → Z such that

g ◦ f(x) = g(f(x)) for x ∈ X is a bijection, too.

Proof. Left as a voluntary exercise.
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