MM 508 Topologi I Ugeseddel 6

The home page of this course can be found on Blackboard or directly on http://www.imada.sdu.dk/~njn/MM508

In the lectures in week 50 we have finished our discussion on connected topological spaces and have investigated homeomorphisms. This correspond to the pages 58-60 of the notes. Hence we have finished the notes.

In week 51 the will be no lectures. Instead we shall do some exercises.

Important notice In Exam question 2 from June 2011 there is a small misprint which was not corrected in the booklet. Item (iii) should read:

There is a sequence $\left(z_{n}\right) \subseteq S$ so that $f\left(z_{n}\right) \rightarrow 1$ for $n \rightarrow \infty$.

Exercises for Tuesday in week 51: Jan09: Problem 4, Jun09: Problem 3 and 4, Jan04: Problem 5. EB 37, 38.

Exercises for Wednesday in week 51:

- Remaining exercises from week 50 , not covered by the above.
- Jun12: Problem 5
- The following three exercises:

Problem 1

Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces so that X is compact. Further we have a $y \in Y$ and a sequence $\left(y_{n}\right) \subseteq Y$ with $y_{n} \rightarrow y$ for $n \rightarrow \infty$ and a continuous function $f: X \rightarrow Y$ so that the following condition is satisfied:

There is a sequence $\left(x_{n}\right) \subseteq X$ so that $d_{Y}\left(f\left(x_{n}\right), y_{n}\right) \rightarrow 0$
Prove that there is an $x \in X$ with $f(x)=y$.

Problem 2

Let (X, d) be a compact metric space and let $f: X \rightarrow X$ be a continuous function so that there is a sequence $\left(x_{n}\right) \subseteq X$ with $d\left(x_{n}, f\left(x_{n}\right)\right) \rightarrow 0$.
Prove that there is an $x \in X$ with $f(x)=x$.

Problem 3

Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces with X compact. Further let $f, g: X \rightarrow Y$ be continuous funtions so that there is a sequence $\left(x_{n}\right) \subseteq X$ so that $d_{Y}\left(f\left(x_{n}\right), g\left(x_{n}\right)\right) \rightarrow 0$.
Prove that there is an $x \in X$ so that $f(x)=g(x)$.

Exercises for Friday in week 51 :

- Remaining exercises from above.
- The following exercise:

Problem 4

Let $f:[0,1] \rightarrow[0,1]$ be a continuous function. We wish to prove that there is an $x \in[0,1]$ with $f(x)=x$. Such an x is called a fixpoint for f. If either $f(0)=0$ or $f(1)=1$ we are done, so we only have to consider the case where $f(0) \neq 0$ and $f(1) \neq 1$.
(i) Show that in this case there is an $x \in] 0,1[$ with $f(x)=x$.
(ii) Can f have more than one fixpoint?

- EB Problem 44.

Greetings Niels Jørgen

